Research Article
Talasila Gopalakrishna Murthy*
Talasila Gopalakrishna Murthy*
Corresponding Author
Department of Pharmaceutics, Bapatla College of Pharmacy, Bapatla-522101, Andhra Pradesh, India.
E-mail: gopalakrishnatalasila@yahoo.
Gummadi Priyanka
Gummadi Priyanka
Department of Pharmaceutics, Bapatla
College of Pharmacy, Bapatla-522101, Andhra Pradesh, India.
E-mail: priyankagummadi2000@gmail.com
Sayala Hema Mani kumari
Sayala Hema Mani kumari
Department of Pharmaceutics, Bapatla College of Pharmacy, Bapatla-522101, Andhra Pradesh, India.
E-mail: hemamani.sayala@gmail.com
Murari Sri Mani Deep
Murari Sri Mani Deep
Department of Pharmaceutics, Bapatla
College of Pharmacy, Bapatla-522101, Andhra Pradesh, India.
E-mail: srimanideepmurari@gmail.com
Gurram Charanya
Gurram Charanya
Department of Pharmaceutics, Bapatla College of Pharmacy, Bapatla-522101, Andhra Pradesh, India.
E-mail: charanyagurram13@gmail.com
Ramagiri Yagna
Ramagiri Yagna
Department of Pharmaceutics, Bapatla College of Pharmacy, Bapatla-522101, Andhra Pradesh, India.
E-mail: yagnaramagiri21@gmail.com
Abstract
Cellulose is the biomass that is most easily found in plants, bacteria, and marine
organisms. However, it is not found in pure conditions in nature and always
bound to other materials such as lignin, hemicellulose, silica, wax, and ash.
Rice husk is an abundant agricultural waste and has high cellulose content from
different rice husks such as Pusa Rh-10 (92), Dwarf (22-70), Parvati (27-16), Sona
and
Keywords
Cellulose, rice husk, physical characters, Kawakita plots.
References
1.
Kordi,
M.; Farrokhi, N.; Pech Canul, MI.; Ahmadikhah, A.; Rice husk at a glance: from
agro-industrial to modern applications. Rice Science. 2024, 31(1), 14-32. https://doi.org/10.1016/j.rsci.2023.08.005.
2.
Nawaz,
S.; Jamil, F.; Akhter, P.; Hussain, M.; Jang, H.; Park, Y.K.; Valorization of
lignocellulosic rice husk producing biosilica and biofuels—A review. Journal of
Physics: Energy. 2022, 5(1),012003. DOI 10.1088/2515-7655/aca5b4
10.1088/2515-7655/aca5b4
3.
Gao,
Y.; Guo, X.; Liu, Y.; Fang, Z.; Zhang,
M.; Zhang, R.; You, L.; Li, T.; Liu, R.H.; A full utilization of rice husk to
evaluate phytochemical bioactivities and prepare cellulose nanocrystals. Scientific
reports. 2018, 8(1),10482. DOI:10.1038/s41598-018-27635-3.
4.
Johar,
N.; Ahmad, I.; Dufresne, A.; Extraction, preparation and characterization of
cellulose fibres and nanocrystals from rice husk. Industrial Crops and
Products. 2012, 37, 93–99. https://doi.org/10.1016/j.indcrop.2011.12.016.
5.
McMullen,
R.L.; Ozkan, S.; Gillece, T.; Physicochemical properties of cellulose ethers.
Cosmetics. 2022, 9(3), 52. https://doi.org/10.3390/cosmetics9030052.
6.
Deshpande, M.C.; Venkateswarlu,V.; Babu, R.K.;
Trivedi, R.K.; Design and evaluation of oral bioadhesive controlled release
formulations of miglitol, intended for prolonged inhibition of intestinal
α-glucosidases and enhancement of plasma glucagon like peptide-1 levels.
International Journal of Pharmaceutics. 2009,3801-2, 1624. https://doi.org/10.1016/j.ijpharm.2009.06.024
7.
Perioli,
L.; Ambrogi, V.; Rubini, D.; Giovagnoli, S.; Ricci, M.; Blasi, P.; Rossi, C.;
Novel mucoadhesive buccal formulation containing metronidazole for the
treatment of periodontal disease.
Journal of Controlled Release. 2004,953, 521-533. https://doi.org/10.1016/j.jconrel.2003.12.018.
8.
LudwigAnnick.; The use of mucoadhesive
polymers in ocular drug delivery. Advanced Drug Delivery Reviews, 2005, 57,
1595-1639. https://doi.org/10.1016/j.addr.2005.07.005.
9.
Karasulu, Y.;
Hilmioglu, H.; Metin, D. Y.; Güneri, T.; Efficacy of a new ketoconazole
bioadhesive vaginal tablet on Candida albicans. Il Farmaco, 2004,592, 163-167. https://doi.org/10.1016/j.farmac.2003.11.018.
10. Sensoy, D.; Cevher,
H.; Sarici, A.; Yilmaz, M.; Özdamar, A.; Bergisadi, N.; Bioadhesive
sulfacetamide sodium microspheres: Evaluation of their effectiveness inthe
treatment of bacterial keratitis caused by Staphylococcus aureus and
Pseudomonasaeruginosa in a rabbit model. European Journal of Pharmaceutics and
Biopharmaceutics, 2009, 723, 487495. doi: 10.1016/j.ejpb.2009.02.006.
11. Barzegar-jalali, M.; Valizadeha, H.; Dastmalchi,
S.; Siahi Shadbad, MR.; Barzegar-Jalal, A.; Adibkia, K.; Mohammadi, G.; Enhancing
dissolution rate of carbamazepine via cogrinding with crospovidone and hydroxy
propyl methyl cellulose. Iranian Journal of Pharmaceutical Research, 2007,63,
159-165. https://doi.org/10.22037/ijpr.2010.716.
12. Benchikh, L.;
Merzouki,A.; Grohens, Y.; Guessoum, M.; Pillin, I.; Characterization of
cellulose nanocrystals extracted from El Diss and El Retma local plants and
their dispersion in poly (vinyl alcohol-co-ethylene) matrix in the presence of
borax. Polymers and Polymer Composites, 2021, (3),218-30. https://doi.org/10.1177/09673911209108.
13. Rashid,S.; Dutta,H.;
Physicochemical characterization of carboxymethyl cellulose from differently
sized rice husks and application as cake additive. LWT. 2022 ,154,112630. https://doi.org/10.1016/j.lwt.2021.112630.
14. Mora, C.F.; Kwan,
A.K.; Chan, H.C.; Particle size distribution analysis of coarse aggregate using
digital image processing. Cement and Concrete Research. 1998, 28(6), 921-32. https://doi.org/10.1016/S0008-8846(98)00043-X.
15. Buckman, Harry O.; Brady, Nyle C.; The Nature and Property of Soils - A
College Text of Edaphology (6th ed.). New York City, Macmillan.1960, 50.
16. Pop, A.L.; Musuc, A.M.; Nicoară, A.C.; Ozon, E.A.;
Crisan, S.; Penes, O.N.; Nasui, B.A.; Lupuliasa, D.; Secăreanu, A.A.;
Optimization of the Preformulation and Formulation Parameters in the
Development of New Extended-Release Tablets Containing Felodipine. Applied
Sciences. 2022, 12(11),5333. DOI:10.3390/app12115333.
17. Lowell,S.;
Shields, J.E.; Powder surface area and porosity. Springer Science &
Business Media; 2013 .
18. N. Anthony Armstrong,Colin M. Minchom Vimal J. Patel, Density Determination of Powders by Liquid Displacement Methods. Drug Development and Industrial Pharmacy,
1989, 15(4),549-559.
19. Shah, R.B.;
Tawakkul, M.A.; Khan, M.A.; Comparative evaluation of flow for pharmaceutical
powders and granules. Aaps Pharmscitech. 2008,250-8. doi: 10.1208/s12249-008-9046-8.
20. Sarraguca, M.C.;
Cruz, A.V.; Soares, S.O.; Amaral, H.R.; Costa, P.C.; Lopes, J.A.; Determination
of flow properties of pharmaceutical powders by near infrared spectroscopy.
Journal of pharmaceutical and biomedical analysis. 2010,52(4),484-92. https://doi.org/10.1016/j.jpba.2010.01.038.
21. Deshmukh H,
Chandrashekhara S, Nagesh C, Patil M, Majethiya V. Comparative Evaluation of
Disintegrant in Orodispersible Tablet of Aceclofenac. Research Journal of
Pharmacy and Technology. 2012;5(6):775-9.
22. Rashid, I.;
Haddadin, R.R.; Alkafaween, A.A.; Alkaraki, R.N.; Alkasasbeh, R.M.;
Understanding the implication of Kawakita model parameters using in-die
force-displacement curve analysis for compacted and non-compacted API powders.
AAPS Open. 2022, 8(1), 6. https://doi.org/10.1186/s41120-022-00053-6.

This work is licensed under the
Creative Commons Attribution
4.0
License (CC BY-NC 4.0).
Abstract
Cellulose is the biomass that is most easily found in plants, bacteria, and marine
organisms. However, it is not found in pure conditions in nature and always
bound to other materials such as lignin, hemicellulose, silica, wax, and ash.
Rice husk is an abundant agricultural waste and has high cellulose content from
different rice husks such as Pusa Rh-10 (92), Dwarf (22-70), Parvati (27-16), Sona
and
Abstract Keywords
Cellulose, rice husk, physical characters, Kawakita plots.

This work is licensed under the
Creative Commons Attribution
4.0
License (CC BY-NC 4.0).

Editor-in-Chief

This work is licensed under the
Creative Commons Attribution 4.0
License.(CC BY-NC 4.0).