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1. Introduction 

 

There are some of the major kinds of stresses like heat, 

drought, cold, and salt stress that crops usually face 

under adverse weather or soil conditions. Disturbance 

in equilibrium which produces changes in 

physiological parameters, and due to stress plant’s 

chemical and physiological changes occur is called 

stress [1]. In most plants, stress causes a variety of 

biochemical, physiological, and metabolic changes [2], 

which may result in oxidative stress and affect plant 

metabolism, performance, and thereby yield [3]. 

Abiotic stresses are often interrelated, either 

individually or in combination; they cause 

morphological, physiological, biochemical, and 

molecular changes that affect plant growth and 

development and ultimately yield. In the present era  

 

 
 

 

 

of global climate change, abiotic stresses are becoming 

more prevalent. The increasing threat of climate 

change is already having a substantial impact on 

agricultural production worldwide causing 

significant unpredictable loss in agriculture [4] and 

threat to global food security [5]. 
 

Plants are subjected to a variety of abiotic stress such 

as salinity, drought, high temperature, low 

temperature, etc. which reduces germination rate and 

seedling growth with significant variations from crop 

to crop [6]. Salinity has an adverse effect on seed 

germination and seedling growth of several crops 

either by creating an osmotic potential in the 

rhizosphere of the plant that inhibits the absorption of 

water or creates toxic effects to the roots and whole  

 

  
Review Article 
 
Stimulatory effect of hormonal seed priming in plant tolerance to 

resist abiotic stress 
 

Anish Choudhury  and Sanjoy Kumar Bordolui*  
 

Department of Seed Science and Technology, Bidhan Chandra Krishi Viswavidyalaya, Mohanpur, Nadia West Bengal, 

India. 

   
  Abstract 
Article Information  Plants exposing abiotic stresses such as drought, salinity, heat, cold, and heavy metals 

that induce complex responses ultimately result in reduced growth as well as crop yield. 
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priming process is a physiological method that involves hydration for enhancement of 

seed germination, early seedling growth, and yield under stressed and non-stressed 

conditions. The seedlings emerging from primed seeds showed early and uniform 

germination. Moreover, the overall growth of plant is enhanced due to the seed-priming 

treatments with phytohormone which have become a significant strategy for reducing 

the impacts of abiotic stress. Therefore, this review analyses the potentiality of priming 

with several phytohormones to mitigate the negative impacts of abiotic stresses, for 

improving crop productivity. 
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crop because of Na+ and Cl− [7, 8]. Drought is one of 

the most important environmental factors limiting 

plant growth and productivity. With the increase of 

drought severity, the drought severity increased, the 

germination rate linearly decreased in unprimed 

cotton seeds [9]. Low-temperature conditions 

decreased plant growth rate because of inhibition of 

photosynthesis and increasing photo-oxidative injury 

of the photosystems [10]. Photo-oxidative damage 

caused lipid peroxidation and degradation of 

chlorophyll and carotene [110]. Plants exert many 

physiological and biochemical changes under low-

temperature conditions that make them survive under 

these conditions [10]. Heat stress is often defined as 

the rise in temperature beyond a threshold level for a 

period of time sufficient to cause irreversible damage 

to plant growth and development. The extent to 

which it occurs in specific climatic zones depends on 

the probability and period of high temperatures 

occurring during the day and/or the night [11]. Thus, 

abiotic stress causes many physiological and 

biochemical changes in the seedlings, which include 

the generation of reactive oxygen species [ROS], 

leading to membrane damage and cell leakage and 

destruction of photosynthetic components [12]. 
 

Various methodologies were adapted from time to 

time to achieve tolerance against stresses. These 

include conventional breeding methods such as 

selection and hybridization and modern methods 

such as mutation breeding, genetic engineering, etc. 

[12].  Attempts were also made to produce transgenic 

plants which can withstand various kinds of stresses 

[12]. But these methods are time-consuming and 

demand skills and involve legal and ethical issues. 

The alternative solution would be more acceptable if 

it is simple, cost-effective, and can be adopted by the 

farmers without any complication, and at the same 

time, it should be effective in manifesting the 

tolerance. 
 

Seed priming is one such farmer’s friendly technique 

recommended by many researchers for better crop 

stand establishment and growth even under adverse 

conditions. It is a simple, safe, economic, and effective 

approach for enhancement of seed germination, early 

seedling growth and yield under stressed and non-

stressed conditions [13]. In plant defence, priming is 

defined as a physiological process by which a plant 

prepares to respond to imminent abiotic stress more  

quickly or aggressively. 
 

The priming process induces the rate of seed 

germination and is associated with the initiation of 

germination-related processes [14] and repair 

processes [15] and increases various free radical-

scavenging enzymes, such as catalase, and peroxidase 

[16]. Several seed priming methods were successfully 

used in agriculture for seed conditioning to accelerate 

the germination rate and improve the seedling 

uniformity [17, 18]. Moreover, seed priming helps 

many crops to neutralize the adverse effects of abiotic 

stress [19]. The various approaches of seed priming 

are hydro priming, osmopriming, chemical priming, 

hormonal priming, biological priming, redox priming, 

solid matrix priming, etc. [111]. Among these 

techniques, seed priming with phytohormones 

(hormonal priming) has emerged as a promising 

strategy in modern stress management as it protects 

plants against various abiotic stresses by increasing 

the level of antioxidant enzyme activity, decreasing 

oxidative damage, and enhancing plant growth. 

Priming for enhanced resistance to abiotic stress is 

operating via various pathways involved in different 

metabolic processes. It is known that seed priming can 

activate these signalling pathways in the early stages 

of growth and result in faster plant defence responses. 

Therefore, the purpose of this review is to summarise 

the understanding of the regulation mechanism 

against abiotic stresses through hormonal priming to 

mitigate the losses occurred in crop production in 

future. 
 

2. Materials and methods 
Relevant literature on hormonal Seed Priming was 

composed for plant growth and yield attributing 

activities released up to January 2023. The literature 

has been searched on the hormonal priming activity 

of the different phytohormones on different crops. 

The main keywords were: abiotic tolerant, 

phytohormones, plant growth, priming, yield etc. 

GoogleScholar®, ResearchGate®, Web of Science®, 

PubMed, SciFindern and Scopus® were used as 

electronic search tools for articles with the several 

definite keywords. We have reviewed only the 

manuscripts which are relevant to this article. 
 

3. Results and discussion 

3.1 Phytohormones 

Plant hormones are known as phytohormones or  
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plant growth regulators (PGRs). These are chemical 

molecules produced by plants and have important 

roles in regulating plant growth and development 

(Fig. 1). Phytohormones function as important 

chemical messengers and modulate many cellular 

processes in plants and can coordinate different 

signalling pathways during exposure to abiotic 

stresses [20, 21]. Auxins (IAAs), cytokinins (CKs), 

gibberellins [GAs], abscisic acid (ABA), salicylic acid 

[SA], and ethylene (ET) are well known 

phytohormones, essential for plant growth and 

development [22, 23]. 
 

 
Figure 1. Schematic model showing possible effects of seed 

priming with phytohormones [24] 
 
 

3.2 Hormonal priming 

Seed priming with hormone solutions is referred to as 

hormonal priming, and hormonal seed priming plays 

an important role in seed metabolism [24]. Seeds are 

pre-soaked with an optimal concentration of 

phytohormone, which enhances germination, 

seedling growth and yield by increasing nutrient 

uptake through enhanced physiological activities and 

root production [25, 26]. Commonly used plant 

growth regulators in seed priming are IAAs, CKs, 

GAs, ABA, SA, and ET. 
 

3.3 Auxins 

The role of auxin in plant development is well known; 

however, its possible function in response to various 

stresses is poorly understood (Fig. 2). Several studies 

demonstrate a novel role of auxin signalling and 

transport in plant tolerance to abiotic stress [27]. Seed 

priming with IAAs enhances cell division, 

photosynthetic activities, and translocation of 

carbohydrates, which results in lateral root initiation, 

flowering, and good stand establishment [28]. Seed 

priming with IAAs (1 ppm) enhanced the seedling  

establishment of Bouteloua gracilis [29], and in wheat 

grass (Agropyron elongates), seeds priming with IAAs 

at 50 ppm improved tolerance to drought stress by 

enhancing antioxidant enzyme activities such as 

catalase [CAT], superoxide dismutase [SOD], and 

peroxidase [30]. Auxin positively modulates root 

biomass and branching, which might improve water 

uptake efficiency as well as partly participates in the 

positive regulation of drought stress resistance 

through the regulation of root architecture [31]. 

According to [31], auxin positively regulated the 

activities of four enzymatic antioxidants (superoxide 

dismutase, catalase, peroxidase, glutathione 

reductase) under drought stress conditions, thus 

conferring effective ROS (reactive oxygen species) 

detoxification to improve drought stress resistance. 
 
 

 
Figure 2. Proposed possible mechanisms used by auxin-and 

abscisic acid (ABA) priming and their roles on the 

germination, growth, and development of plants under 

different stresses [24]. 
 

Under salinity stress, wheat seeds priming with IAAs 

(100, 150 and 200 mg L-1) regulated hormonal 

homeostasis, which enhanced the CO2 assimilation 

rate and ultimately resulted in increased grain yield 

[32]. SOS pathway (which maintains ion homeostasis 

under salt stress) modulates root response by 

regulating PIN2 protein and auxin asymmetric 

distribution [33]. Also, seed priming with IAAs 

improved the germination and growth of different 

species, such as rice (Oryza sativa] and pigeon pea 

(Cajanus cajan), under arsenic or cadmium (Cd) stress 

[34]. 
 

High and low day and night temperature (suppose 24-

35 °C day temperature and 5-10 °C night temperature) 

was found to reduce fruit set, pollen grain viability,  
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Table 1. Seed-priming with cytokinin adopted for developing abiotic stress tolerance in plants. 
 

Plant Stresses Responses of Plant References 

Soybean (Glycine max) Drought Improved drought tolerance in soybean plants [55] 

Pigeon pea (Cajanus cajan) Salt Prevented the damage caused by the apparatus involved in 

protein synthesis 

[57] 

Cadmium Tolerance to the effects of Cd stress [34] 

Basil (Ocimum basilicum) Drought Reduced negative effects of drought stress [58] 

Wheat (Triticum aestivum) Salt Decreased ABA concentration, increased IAAs concentration, 

and enhancement of salt tolerance 

[59] 

Salt Improved photosynthetic rate, water use efficiency and 

stomatal conductance, decreased Na+ and Cl− level, increased 

K+ level 

[60] 

Salt Decreased electrolyte leakage and conferred salt tolerance [61] 

Salt Increased tissue N content and nitrate reductase activity [62] 

Salt Induced reduction in inorganic ion accumulation and 

increasing membranes stability and K+/Na+ ratio, enhanced 

chlorophyll formation and soluble sugar accumulation 

[63] 

Salt Alleviated salt stress by enhanced ethylene production [64] 

 

and IAA levels in tomato [35]. However, application 

of auxin completely reversed male sterility in barley 

and Arabidopsis [36]. The content of auxin was not 

affected by proline, but the expression of auxin 

carriers was reduced and in the overexpression lines 

of PDH, in which proline content was reduced, the 

expression of auxin carrier genes was induced [114].  
 
 

3.4 Cytokinin 

The exogenous application of CKs can mitigate the 

abiotic stresses on crop plants, which ultimately 

results in increased growth, development, and yield 

[52]. Likewise, supplementation of CKs also reduces 

salinity stress in plants [52], and it increases starch 

accumulation in salt-stressed rice plants [53] (Table 1). 

It has been reported that wheat seeds priming with 

kinetin (100 mg L-1, 150 mg L-1, and 200 mg L-1) 

enhanced germination and tolerance against salt by 

decreasing ABA and increasing IAAs concentrations 

[54]. Likewise, Mangena [55] reported that soybean 

seed priming with CKs (Benzyl adenine; 4.87 mg L-1) 

increased soybean root biomass, flowering, and 

fruiting under drought stress. Priming of aged 

groundnut (Arachis hypogaea L.) seeds with CKs (150 

ppm) enhanced germination and seedling indices by 

enhancing antioxidant enzyme activities and 

decreasing oxidative damage [56]. Seed priming with 

CKs or a combination of CKs and other plant 

hormones has resulted in the mitigation of abiotic 

stresses in various plant species. 
 

 

3.5 Gibberallin 

Different abiotic stresses, such as salinity, drought, 

chilling, heat, and heavy metals, inhibit proper 

nutrient uptake and photosynthesis, which ultimately 

results in stunted plant growth [65]. The exogenous 

application of gibberallin can mitigate abiotic stresses 

and enhance plant growth and development (Table 2). 

Exogenous application of gibberallin improved the 

growth of wheat (Triticum aestivum) plants and 

mitigated drought induced oxidative damage by 

maintaining relative water content, balancing the 

antioxidant mechanism system, and conserving the 

chlorophyll concentration [66]. Foliar application of 

GA3 @50ppm to tomato (Solanum lycopersicum) plants 

increased relative leaf water content, stomatal density, 

and chlorophyll content by mitigating salinity stress 

[67]. Besides, GA3 was stimulated in plant growth and 

yield leaf of lettuce (Lactuca sativa) by enhancing 

biomass accumulation, leaf expansion, stomatal 

conductance, water use efficiency, and nitrogen use 

efficiency [68]. 
 

3.6 Abscisic acid 

ABA is one of the major plant hormones and is also 
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Table 2. Seed-priming with gibberellin and response of plant species. 
 

Plants Stresses Responses of Plant References 

Marigold and Sweet fennel Salt Increased dry matter and enhanced tolerance to salinity by 

enhancing antioxidant enzyme activities 

[13] 

Pigeon pea (Cajanus cajan) Cadmium Increased germination speed index and germination 

percentage and tolerance to Cd stress 

[34] 

Milk Thistle (Silybum marianum) Salt Increased α-amylase activity and alleviated salt stress 

effects 

[37] 

Chickpea (Cicer arietinum) Drought Increased relative water content, seed protein, and reduced 

electrolyte leakage 

[38] 

Wheat (Triticum aestivum) Salt Promoted better salinity tolerance [39] 

Sorghum (Sorghum bicolor) Drought Increased CAT and APX activities [40] 

Corn (Zea mays) Salt Increased tissue water content [41] 

Maize (Zea mays),  

Pea (Pisum sativum),  

Grass pea (Lathyrus sativus) 

Salt Alleviated salt stress effects [42] 

Rice (Oryza sativa) Flood Increased α-Amylase activity, sucrose, glucose, and 

fructose content in seeds. 

[43] 

Alfalfa (Medicago sativa) Salt Induced enzymatic activities (SOD, CAT, GPX, APX, GR) 

and decreased lipid peroxidation, and reduced membrane 

damage of alfalfa. 

[44] 

Sponge gourd (Luffa aegyptiaca) Salt Prevented the adverse effect of salinity [45] 

Soybean (Glycine max) Saline-

alkali 

Increased activities of the antioxidant defense system, 

photosynthetic pigment contents, better membrane 

integrity 

[46] 

Maize (Zea mays) Salt Reduced negative effect of salt stress [47] 

Sweet sorghum (Sorghum bicolor) Salt Enhanced water absorption and improved salinity 

tolerance 

[48] 

Maize (Zea mays) Drought Increased chlorophyll content and enhance drought 

tolerance 

[49] 

Okra (Abelmoschus esculentus) Salt Increased water content of the okra seedlings [50] 

Triticale Salt Reduced Na+ accumulation and increased K+ uptake [51] 
 

 

known as a stress hormone. It plays a vital role in 

mediating plant responses to various abiotic stresses, 

such as salt, heat, and drought [69] (Fig. 3). ABA not 

only plays a role in abiotic stress mitigation but also 

plays a significant role in plant growth and 

development [70]. Rice seeds primed with ABA 

exhibited enhanced seedling growth and yield in 

saline soil by balancing nutrient uptake [71]. Likewise, 

priming rice seeds with ABA reduced alkaline stress 

by enhancing antioxidant enzyme activities and the 

activity of stress tolerance-related genes in the roots of 

rice seedlings [72]. It has been reported that 

phytohormones are effective in the mitigation of 

heavy metal stress [23]. ABA biosynthetic gene 

expressions are induced by heavy metal stresses, 

which results in increased levels of endogenous ABA 

[73]. Priming Arabidopsis seeds with amino-butyric 

acid enhanced drought tolerance by accumulation of 

ABA and the closing of stomata [74]. The regulation of 

proline metabolism is dependent on ABA 

accumulation [116], whereas other responses occur 

independently of ABA, and that ABA alone cannot 

duplicate drought-induced proline accumulation 

[117]. They proposed that GAs inhibited flowering 

and ABA promoted flowering in litchi [118]. 
 

 

 

 

 

 

 

 

 

 

3.7 Salicylic acid 

Salicylic acid (SA) is a phenolic compound involved 

in the regulation of growth and development of plants, 

and their responses to biotic and abiotic stress  
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Figure 3. Abscisic acid (ABA) priming protected alfalfa (Medicago sativa L.) seedlings from wilting and death under alkaline 

conditions. Eighteen-day-old alfalfa seedlings were root-drenched with 10 μM ABA or without 10 μM ABA (Control) for 16 

h and then exposed to alkaline stress (15 mM Na2CO3). (A, B) Photographs of seedling growth were taken after 60 h of alkaline 

treatment, (C) leaf withering (%) was recorded at 24 h, 36 h, 48 h, and 60 h, (D) survival rate of alfalfa seedlings was determined 

after 48 h and 60 h of alkaline treatment, (E) total fresh or dry weight of seedlings and (F) water content were measured after 

60 h of alkaline treatment. Values are the mean ± standard error, n = 3. Asterisks denote a significant difference compared 

with control plants (* p < 0.05, ** p < 0.01) based on Student’s t-test. Different letters above the columns indicate significant 

differences (p < 0.05) at each time point based on Duncan’s test [112]. 

 

factors [75] (Table 3; Fig. 4). It is involved in the 

regulation of important plant physiological processes 

such as photosynthesis, nitrogen metabolism, proline 

metabolism, production of glycine betaine, 

antioxidant defense system, and plant-water relations 

under stress conditions and thereby protects plants 

against abiotic stresses [75]. SA has been shown to 

improve plant tolerance to major abiotic stresses such 

as metal [76], salinity [77], drought [78], and heat 

stress [79]. The exogenous application of salicylic acid 

enhanced maize (Zea mays) productivity under low 

temperature stress, as well as the germination and 

growth parameters of garden cress (Lepidium sativum) 

seedlings under salinity stress [80], and mitigated 

drought stress and enhanced the vegetative growth of  

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Figure 4. Mechanisms of SA priming for abiotic stress 

tolerance enhancement [24]. 
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Table 3. Seed priming with salicylic acid and response of plant species. 
 

Crops Stresses Responses of Plants References 

Rice (Oryza sativa) Chromium Increased chlorophyll content and proper nutrient 

uptake 

[85] 

Water deficit Decreased water stress [86] 

Chilling Enhanced antioxidant enzyme activities, detoxified 

ROS 

[87] 

Salinity Improved Na+/K+ and maintaining membrane 

integrity 

[88] 

Safflower (Carthamus tinctorius) Drought Enhanced antioxidant enzyme activities and reduced 

oxidative damage 

[89] 

Maize (Zea mays) Chilling Increased α-amylase and antioxidant enzyme 

activities and endogenous SA content 

[90] 

Chilling Enhanced enzymatic antioxidant activities, high 

tissue water content 

[91] 

Lead Increased glycine betaine and nitric oxide content and 

regulation of gene expression 

[92] 

Chromium and 

UV-B 

Reduced the accumulation of chromium and ROS [93] 

Wheat (Triticum aestivum) Salinity Decreased the electrolyte leakage [94] 

Drought Balanced nutrient uptake [95] 

Osmotic Resistance to osmotic stress [96] 

Salinity Higher contents of photosynthetic pigments, soluble 

sugar, and protein 

[97] 

Boron toxicity Increased photosynthetic pigments [98] 

Cadmium Modulates nutrient relations and photosynthetic 

attributes 

[99] 

Smooth vetch (Vicia dasycarpa) Water deficit Higher accumulation of proline and glycine betaine [100] 

Okra (Abelmoschus esculentus) Chilling Enhanced antioxidant enzyme activities and 

membrane integrity 

[101] 

Sorghum (Sorghum bicolor) Drought Improved antioxidant defense system [102] 

Tomato (Solanum lycopersicum) Salinity Decreased salinity stress [103] 

Heat Increased lycopene content [104] 

Pumpkin Salinity Protein contents and nitrate reductase were increased [105] 

Faba bean (Vicia faba) Salinity Higher osmotic solute content, carotenoids, and 

antioxidant enzyme activity 

[106] 

 

drought stress and enhanced the vegetative growth of 

safflower (Carthamus tinctorius) [81]. Priming with 

salicylic acid at 100 mg L-1 enhanced emergence and 

produced early seedling growth in cucumber 

(Cucumis sativus) [82] and increased germination and 

productivity of Vicia faba [83] and sesame (Sesamum  

indicum) [84]. 

3.8 Ethylene 

Ethylene is regarded as a stress-responsive hormone 

besides its role in regulation of plant growth and 

development [107] (Fig. 5). The hydrocarbon ethylene 

is an important plant hormone and it is widely used 

for ripening fruits [108]. It was found that exogenous 

application of ethylene with sufficient sulphur level 



J. Agric. Food Sci. Biotechnol.  1(3), 140-152, 2023                                                                  Choudhury and Bordolui 2023    

Page | 147  
 

counteracted the cadmium-induced photosynthetic 

and growth inhibition in mustard plants [109]. Free 

proline content and ethylene production increase in 

cold-acclimated winter rapeseed seedlings under 

pretreatment with glutamine and especially with 

proline [115]. Free proline is involved in the response 

to cold stress, and its level may be an indicator of cold-

hardening and freezing tolerance, but the role of 

ethylene in the regulation of cold tolerance remains  

not quite clear [115]. 

  
 

 

 
 

Figure 5. Ethylene response of salt stressed rice seedlings 

following Ethephon and 1-methylcyclopropene seed 

priming. SG= speed of germination, GE= germination 

energy percentage, 3rd and 6th DAS= 3rd and 6th day after 

sowing, and FG= final germination [113]. 
 

4. Conclusions 

Seed priming with phytohormones has emerged as a 

promising strategy in modern stress management as 

it protects plants against various abiotic stresses by 

increasing level of antioxidant enzyme activity, 

decreasing oxidative damage, and enhancing plant 

growth. Thus, seed priming with phytohormones 

improves the tolerance of crop plants to abiotic stress, 

and this technique can be utilized to maintain 

sustainable crop production in drought-, saline-, and 

flood-prone areas of the world. Seed priming with 

phytohormones not only improves the tolerance to 

abiotic stresses but also ensures harmonized 

germination by breaking the dormancy and 

enhancing viability. This review provides insight into 

the role of seed priming with phytohormones in 

mitigating the effects of abiotic stress on seed 

germination and plant growth. Seed priming with 

phytohormones has emerged as an effective seed 

treating tool for many crops, but treating conditions 

and methods differ from crop to crop, and seed 

priming with phytohormones has still limitations. For 

instance, prolonged seed treatment with hormonal 

solution during priming may cause the loss of seed 

tolerance to desiccation, which reduces seed viability. 
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