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1. Introduction 
The Cupressaceae is made up of 29 genera, which 

include Cupressus L., Juniperus L., and Thuja L., as well 

as Callitropsis Oerst., Calocedrus Kurz, and Sequoia 

Endl. Most members of this family are resinous, and  

 
 

their foliage generally emits strong aromas when 

rubbed or bruised [1]. As such, several members of the 

family are commercially important sources of 

essential oils, including Mediterranean cypress 
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 Abstract 
Article Information Members of the Cupressaceae have historically held importance in traditional medicine 

as well as sources of essential oils. As part of our interest in medicinal and aromatic plants, 

we obtained essential oils from the foliage of Callitropsis nootkatensis, Calocedrus decurrens, 

Sequoia sempervirens, and Thuja plicata growing in the western United States. The essential 

oils were analyzed by gas chromatography particularly enantioselective gas 

chromatography to ascertain whether there are trends in the enantiomeric distribution of 

chiral monoterpenoids in this family. The major components in C. nootkatensis were α-

pinene (33.5%, 16.4%; 81.8% (‒)-α-pinene), (+)-δ-3-carene (28.6-11.0%), and limonene 

(34.4%, 4.2%; 89.7% (+)-limonene). The major components in C. decurrens were (+)-δ-3-

carene (28.6-11.0%), limonene (44.4-14.7%, 92.4% (+)-limonene, and terpinolene (10.0-

5.4%). The major components in S. sempervirens were α-pinene (18.8-10.1%, 91.6% (‒)-α-

pinene), limonene (8.7-6.2%, 87.9% (+)-limonene), and germacrene B (8.2-5.4%). (‒)-α-

Thujone (65.9%, 62.5%) and (+)-β-thujone (12.1%, 10.2%) dominated the essential oil of T. 

plicata. The chemical compositions of the essential oils are comparable to those reported 

previously. However, this is the first investigation of the enantiomeric distribution of 

chiral monoterpenoids in C. nootkatensis, C. decurrens, and S. sempervirens. (+)-Sabinene is 

the major enantiomer in the Cupressaceae, whereas (–)-sabinene is the major enantiomer 

in Pinus spp. (+)-Limonene is the major enantiomer in the Cupressaceae, while (–)-

limonene predominates in the Pinaceae. In contrast to members of the Pinaceae (e.g., Abies 

and Pinus spp.), in which (–)-terpinen-4-ol and (–)-α-terpineol were dominant, these two 

monoterpene alcohols showed variable enantiomeric distributions in the Cupressaceae. 

The enantioselective gas chromatographic analysis of the Cupressaceae adds to our 

understanding of the phytochemistry of this family. 
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Figure 1. Natural range of Callitropsis nootkatensis (D. Don) 

Oerst. [3]. 
 

(Cupressus sempervirens L.) foliar essential oil, juniper 

(Juniperus communis L.) “berry” essential oil, eastern 

red cedar (Juniperus virginiana L.) wood essential oil, 

and eastern white cedar (Thuja occidentalis L.) foliar 

essential oil [2]. 
 

Callitropsis nootkatensis (D. Don) Oerst. (syn. 

Chamaecyparis nootkatensis (D. Don) Spach, 

Xanthocyparis nootkatensis (D. Don) Farjon & D.K. 

Harder, Cupressus nootkatensis D. Don), Cupressaceae 

(Nootka cypress, Alaska yellow-cedar), ranges 

naturally in coastal northwestern North America, 

from southern Alaska, through British Columbia and 

into Washington, including the Cascade Ranges of 

Washington and Oregon to the Oregon-California 

border (Fig. 1) [3]. Nootka cypress is an evergreen tree 

that grows up to around 40 m in height. The foliage 

forms flat sprays with green scale-like leaves, 1.5-2.5 

mm long (Fig. 2) [4]. 
 

The Kwakiutl tribe of British Columbia used C. 

nootkatensis in their traditional medicine [5]. The 

foliage was used in a sweat bath to treat arthritis and 

rheumatism, an infusion of the foliage was used 

externally to treat sores and swellings and it was taken 

internally as a panacea. Previous studies of the foliar 

essential oils of C. nootkatensis were carried out by 

Andersen and Syrdal [6], Cheng and von Rudloff, 

who were able to isolate and characterize individual 

enantiomers (–)-α-pinene, (+)-δ-3-carene, and (+)- 

Figure 2. Callitropsis nootkatensis (D. Don) Oerst. A: Foliage. 

B: Bark. 
 

limonene [7], and Adams et al. [8, 9]. In addition, 

volatiles from the heartwood extracts of C. nootkatensis 

have been characterized [10]. 
 

Calocedrus decurrens (Torr.) Florin (incense cedar) is a 

tree growing up to 57 m tall, with cinnamon brown, 

fibrous bark, and leaves 3-14 mm long (Fig. 3) [11].  
 

 
 

Figure 3. Calocedrus decurrens (Torr.) Florin (incense cedar). 

A: Habit. B: Bark, C: Foliage. 

 

The tree is native to montane forests from Oregon 

south through California to northern Baja California, 

Mexico, and east to western Nevada (Fig. 4) [12]. The 

Mendocino Indian Tribe used C. decurrens as a 

gastrointestinal aid and a decoction of foliage was 

taken for stomach troubles [13]. The Paiute inhaled an 

infusion of the foliage to treat colds [14]. The Klamath 

people used the foliage of C. decurrens to prepare an 

herbal steam bath [15]. The essential oils of C. 

decurrens have been studied, including heartwood 

[16], bark [17], branch [18], and resin [17] essential oils, 

as well as foliar essential oils [17–22]. 

Sequoia sempervirens (D. Don) Endl. (California 

redwood) is a very large tree, probably the tallest tree 
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Figure 4. Native range of Calocedrus decurrens [23]. 

 

species in the world, growing up to around 110 m tall. 

The bark is reddish-brown, thick and fibrous, and 

deeply furrowed; the leaves are 1-30 mm long with 

stomata on both surfaces (Fig. 5). The natural range of 

the tree is confined to the coastal areas of California, 

from the Oregon border, south to Big Sur State Park 

[24]. In addition, the tree is a popular ornamental as 

well as an agroforestry resource. The Pomo people of 

California applied a poultice of heated leaves to treat 

earaches [25]. The bark [17], wood [26], and leaf [19, 

27–30] essential oils of S. sempervirens have been 

analyzed. The major components in the leaf essential 

oils were generally sabinene (8.5-16.5%), limonene 

(8.7-10.4%), β-phellandrene (3.1-13.7%), α-pinene (6.3-

10.4%), and myrcene (3.5-7.0%), while the wood was 

rich in α-pinene (27.4% and 21.0%), abietadiene (10.0% 

and 9.6%), trans-totarol (16.8% and 7.8%), 1-dodecanol 

(6.6% and 6.8%), and 1-tetradecanol (8.6% and 17.0%) 

[26].  

There are two populations of Thuja plicata Donn ex. D. 

Don (western red cedar), a Coast Range-Cascade 

Range population from southeastern Alaska to 

northwestern California, and a Rocky Mountain 
 

 

Figure 5. Sequoia sempervirens (D. Don) Endl. A: Leaves and 

bark. B: Scan of leaves. 

 

 
Figure 6. Native range of Thuja plicata [3]. 

 

population ranging from British Columbia to Idaho 

and Montana (Fig. 6) [3, 31].  
Western red cedar is a tree up to 50 m tall. The bark is 

reddish-brown or grayish-brown and fibrous with 

longitudinal fissures; the foliage is in sprays, 15-50 cm 

long and 5-15 cm wide (Fig. 7) [31]. 
 

There have been several investigations on the foliar 

essential oil compositions of T. plicata, which has been 

reviewed [32]. The essential oils were dominated by 

α-thujone (70.2 ± 8.0%), with lower concentrations of 

β-thujone (6.8 ± 1.8%), sabinene (3.5 ± 1.5%), and 

terpinen-4-ol (3.0 ± 0.8%). 
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Figure 7. Thuja plicata Donn ex. D. Don. A: Bark. B: Foliage. 

 
 

As part of our ongoing interest in the essential oils of 

gymnosperms and aromatic and medicinal plants of 

the western United States, this study aimed to obtain 

and analyze the essential oils of four members of the 

Cupressaceae, Callitropsis nootkatensis, Calocedrus 

decurrens, Sequoia sempervirens, and Thuja plicata, using 

gas chromatographic methods. Although the foliar 

essential oil compositions of these four tree species 

have been previously reported, this study confirms 

and complements the previous investigations. 

Furthermore, to the best of our knowledge, this is the 

first report on the enantioselective gas 

chromatographic analyses of C. nootkatensis, C. 

decurrens, and S. sempervirens. Chiral GC-MS not only 

provides additional phytochemical characterization 

of these plants, but also serves to establish a baseline 

for the comparison of essential oils that may be 

commercialized and subject to adulteration. 
 

2. Materials and methods 
2.1. Plant identification and collection 

Foliage from individual C. nootkatensis trees was 

collected from Mt. Hood, Oregon, USA, and Pine 

Lake, Washington, USA; C. decurrens samples were 

collected from Mt. Lassen, California, USA; S. 

sempervirens samples were collected from Paradise, 

California, USA; and T. plicata samples were collected 

from Tillamook State Forest, Oregon, USA. The 

collection details are summarized in Table 1. The trees 

were tentatively identified in the field by W.N. Setzer 

and verified by comparison with herbarium samples 

from the C.V. Starr Virtual Herbarium, New York 

Botanical Garden (https://sweetgum.nybg.org/ 

science/vh/ accessed on 12 December 2024). Voucher 

specimens (Table 1) were deposited at the University 

of Alabama in Huntsville herbarium. Plant materials 

were stored frozen (–20 °C) until processed. 
 

2.2. Hydrodistillation 

The foliar essential oils of C. nootkatensis, C. decurrens, 

S. sempervirens, and T. plicata were obtained by 

hydrodistillation of the chopped fresh/frozen samples 

using a Likens-Nickerson apparatus with continuous 

extraction of the distillate with dichloromethane. The 

hydrodistillation details are summarized in Table 1. 
 

2.3. Gas chromatographic analysis 

The essential oils were analyzed by gas 

chromatography (GC-MS, and enantioselective GC-

MS) as previously described [33, 34]. The gas 

chromatographic instrumentation and protocols are 

summarized in Supplementary Table S1. Retention 

indices were determined using the method of van den 

Dool and Kratz [35]. Essential oil components were 

determined by comparing with mass spectral 

fragmentation patterns and retention index values 

with those reported in the databases of Adams [36], 

Mondello [37], NIST20 [38], and Satyal [39]. 
 

2.4. Statistical analyses 

Agglomerative hierarchical cluster analyses (HCA) 

were carried out using XLSTAT v. 2018.1.1.62926 

(Addinsoft, Paris, France). In each case, the major 

components were used for the analysis, dissimilarity 

was used to determine clustering based on the 

Euclidean distance, and Ward’s method was used to 

define agglomeration. Analysis of variance was 

conducted by one-way ANOVA followed by Tukey’s 

post hoc test using Minitab® 18 (Minitab Inc., State 

College, PA, USA). Differences at p < 0.05 were 

considered to be statistically significant. 
 

3. Results and discussion 
3.1. Callitropsis nootkatensis 

Hydrodistillation of C. nootkatensis foliage from 

Oregon and Washington, USA, gave pale yellow 

essential oils in yields of 5.35% and 7.09% (w/w), 

respectively. The essential oils were analyzed by gas 

chromatography. A total of 115 compounds were 

identified in the two essential oil samples, which 

accounted for 99.2% and 99.8% of the total 

composition (Supplementary Table S2, Supplementary 

Fig. S1).   

 

 

 

 

 

https://www.currentsci.com/images/articlesFile/supplementary.1757952346.pdf
https://www.currentsci.com/images/articlesFile/supplementary.1757952346.pdf
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Table 1. Collection and hydrodistillation details of Cupressaceae foliar essential oils. 
 
 

Plant sample Voucher Collection Date Collection location 
Mass 

foliage (g) 

Mass 

essential oil (g) 

Callitropsis nootkatensis, 

Oregon 
WNS-Cnoot-0287 25 June 2024 

45°18'18" N, 121°32'19" W,  

1149 m asl 
138.33 5.345 

Callitropsis nootkatensis, 

Washington 
WNS-Cnoot-1004 25 October 2024 

47°35'13" N, 122°01'34" W,  

116 m asl 
141.10 7.085 

Calocedrus decurrens #1 WNS-Cdec-5408 28 August 2024 
40°21'04" N, 121°32'19" W,  

1216 m asl 
176.11 4.718 

Calocedrus decurrens #2  28 August 2024 
40°21'04" N, 121°32'18" W,  

1213 m asl 
210.02 4.796 

Calocedrus decurrens #3  28 August 2024 
40°21'04" N, 121°32'18" W,  

1214 m asl 
155.49 4.619 

Sequoia sempervirens #1 WNS-Ssemp-1247 29 August 2024 
39°46'06" N, 121°34'36" W,  

603 m asl 
112.86 3.0740 

Sequoia sempervirens #2  29 August 2024 
39°46'06" N, 121°34'36" W,  

603 m asl 
100.70 2.5025 

Sequoia sempervirens #3  29 August 2024 
39°46'06" N, 121°34'36" W,  

603 m asl 
126.14 3.6446 

Thuja plicata #1 WNS-ThPl-0306 28 June 2024 
45°18'51" N, 123°26'33" W,  

580 m asl 
110.77 3.539 

Thuja plicata #2  28 June 2024 
45°18'52" N, 123°26'32" W,  

582 m asl 
77.37 3.469 

 
 

The major essential oil components are listed in Table 

2. The major components in the Oregon and 

Washington samples were α-pinene (33.5% and 

16.4%, predominantly (–)-α-pinene), (+)-δ-3-carene 

(28.3% and 30.2%), limonene (4.2% and 34.4%, 

predominantly (+)-limonene), and β-phellandrene 

(6.1% and 0.7%). 
 

Cheng and von Rudloff analyzed five samples of C. 

nootkatensis foliage from Vancouver Island, British 

Columbia, Canada, and found α-pinene (34.1 ± 2.7%), 

δ-3-carene (30.0 ± 4.9%), and limonene (17.3 ± 6.5%) to 

be the most abundant components [7]. Furthermore, 

the enantiomers (–)-α-pinene, (+)-δ-3-carene, and (+)-

limonene were identified [7]. Adams and co-workers 

[9] examined foliar essential oils collected from 

several locations in Alaska, British Columbia, 

Washington, and Oregon, and used the compositions 

to describe several chemotypes. Regardless of 

chemotype, each of the essential oil samples described 

by Adams et al. showed that α-pinene, δ-3-carene, and 

limonene were the abundant constituents. In order to 

place the compositions of this current study into the 

context of previous reports [7–9], an agglomerative 

hierarchical cluster analysis (HCA) was carried out 

(Fig. 8).  
 

Four well-defined clusters were identified based on  

the HCA. Cluster 1 has relatively high, comparable 

concentrations of δ-3-carene (17.7 ± 2.8%), limonene 

(18.5 ± 4.0%), and β-phellandrene (18.5 ± 4.0%), but 

relatively low α-pinene concentration (10.6 ± 3.4%). 

Cluster 2 is made up of the C. nootkatensis sample from 

Washington in this study, as well as samples from 

Washington and Vancouver Island, British Columbia, 

from Adams et al. (2007) [8]. These samples are from 

geographically comparable locations, therefore, the 

similarities are not surprising. Cluster 2 is 

characterized by high limonene (37.2 ± 3.6%), but 

relatively low α-pinene (12.8 ± 4.1%) and δ-3-carene 

(19.3 ± 9.1%) concentrations. The sample of C. 

nootkatensis from Oregon in this study is found in 

Cluster 3, along with the samples from Cheng and von 

Rudloff [7] and Adams et al. [9]. High α-pinene (32.0 

± 3.9%) and δ-3-carene (28.9 ± 5.1%) concentrations 

describe this chemotype, along with relatively low 

limonene (3.4 ± 1.6%) and β-phellandrene (3.2 ± 0.7%) 

concentrations. Finally, Cluster 4 shows moderate α-

pinene (18.2 ± 5.5%) and δ-3-carene (20.9 ± 4.9%) 

concentrations, as well as increased concentrations of 

limonene (8.5 ± 3.8%) and β-phellandrene (7.4 ± 4.7%). 

An ANOVA treatment based on the four major 

components in the four clusters was carried out. The 

differences between the four clusters are illustrated in  
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Table 2. Major chemical components of the foliar essential oils (percentages) and monoterpene enantiomeric distribution 

(percentages) of Callitropsis nootkatensis. 
 

RIcalca RIdbb Compounds 
Major chemical components (%) 

Oregon Washington 

933 933 α-Pinene 33.5 16.4 

948 948 α-Fenchene 1.1 1.3 

978 978 β-Pinene 3.7 1.5 

989 989 Myrcene 4.2 2.7 

1009 1008 δ-3-Carene 28.3 30.2 

1030 1030 Limonene 4.2 34.4 

1032 1031 β-Phellandrene 6.1 0.7 

1086 1086 Terpinolene 2.7 2.9 

RIcalcc RIdbd Enantiomers 
Enantiomeric distribution (%) 

Oregon Washington 

974 976 (–)-α-Pinene 84.5 79.1 

982 982 (+)-α-Pinene 15.5 20.9 

1027 1027 (+)-β-Pinene 2.6 7.1 

1031 1031 (–)-β-Pinene 97.4 92.9 

1046 1052 (+)-δ-3-Carene  100.0 100.0 

nd e na f (–)-δ-3-Carene 0.0 0.0 

1075 1073 (–)-Limonene 19.5 1.2 

1079 1081 (+)-Limonene 80.5 98.8 

1085 1083 (–)-β-Phellandrene 22.7 88.1 

1089 1089 (+)-β-Phellandrene 77.3 11.9 

a RIcalc = Retention index values determined with respect to a homologous series of n-alkanes on a ZB-5ms column. b RIdb = Reference 

retention index values from the databases [36–39]. c RIcalc = Retention index values determined with respect to a homologous series of n-

alkanes on a Restek B-Dex 325 capillary column. d RIdb = Retention index from our in-house database prepared using commercially 

available standards. e nd = compound not detected. f na = standard compound not available. 

 

 
Figure 8. Dendrogram obtained from an agglomerative 

hierarchical cluster analysis (HCA) of Callitropsis 

nootkatensis essential oil samples. Samples with five numbers 

are from Adams et al. 2014 [9]; samples Adams-WA, Adams-BC1, 

and Adams-BC2 are from Adams et al. 2007 [8]; samples This-WA 

and This-OR are from this current study; samples Cheng-1, -2, -3, 

5b, and 6b are from Cheng and von Rudloff 1970 [7]; the sample 

Czech is a cultivated sample from the Czech Republic [40].  

 

Fig. 9. The ANOVA comparison supports the 

dissimilarities observed in the HCA.  

3.2. Calocedrus decurrens 

The foliar essential oils of C. decurrens were obtained 

as colorless liquids with a yield of 2.28-2.97% (w/w). 

The major components of the essential oils by gas 

chromatographic analyses are summarized in Table 3. 

A total of 74 compounds were identified in the 

essential oils, which accounted for 91.6%, 95.9%, and 

93.9% of the total composition (Supplementary Table S3, 

Supplementary Fig. S2). 

The essential oils were dominated by monoterpene 

hydrocarbons, including limonene (14.7-44.4%, 

predominantly (+)-limonene), δ-3-carene (11.0-28.6%, 

exclusively (+)-δ-3-carene), terpinolene (5.4-10.0%), 

and myrcene (5.5-6.7%), followed by the oxygenated 

monoterpenoid α-terpinyl acetate (4.9-6.8%). 
 

The foliar essential oils of C. decurrens have been 

previously investigated. Samples of C. decurrens from 

northern California were analyzed by von Rudloff 
 

 

https://www.currentsci.com/images/articlesFile/supplementary.1757952346.pdf
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Table 3. Major chemical components of the foliar essential oils (percentages) and monoterpene enantiomeric distribution 

(percentages) of Calocedrus decurrens. 
 

RIcalca RIdbb Compounds 
Major chemical components (%) 

C.d. #1 C.d. #2 C.d. #3 

934 933 α-Pinene 7.9 4.1 5.0 

989 991 Myrcene 6.7 5.9 5.5 

1011 1009 δ-3-Carene 28.6 14.3 11.0 

1030 1030 Limonene 14.7 38.7 44.4 

1086 1086 Terpinolene 10.0 6.4 5.4 

1219 --- Methyl pin-2-en-8-oate c 2.1 1.9 3.6 

1326 --- Pin-2-en-8-yl acetate c 3.2 - - 

1345 1346 α-Terpinyl acetate 5.0 6.8 4.9 

RIcalcd RIdbe Enantiomers 
Enantiomeric distribution (%) 

C.d. #1 C.d. #2 C.d. #3 

976 976 (–)-α-Pinene 82.8 53.1 48.0 

982 982 (+)-α-Pinene 17.2 46.9 52.0 

1049 1052 (+)-δ-3-Carene  100.0 100.0 100.0 

nd f na g (–)-δ-3-Carene 0.0 0.0 0.0 

1074 1073 (–)-Limonene 16.5 3.7 2.6 

1078 1081 (+)-Limonene 83.5 96.3 97.4 
a RIcalc = Retention index values determined with respect to a homologous series of n-alkanes on a ZB-5ms column. b RIdb = Reference 

retention index values from the databases [36–39]. c Identification tentative; reference RI value not available. d RIcalc = Retention index values 

determined with respect to a homologous series of n-alkanes on a Restek B-Dex 325 capillary column. e RIdb = Retention index from our in-

house database prepared using commercially available standards. f nd = compound not detected. g na = standard compound not available. 

 

 
Figure 9. Average percentage compositions of the major 

components in Callitropsis nootkatensis essential oil clusters. 

For each component, bars with the same numbers are not 

significantly different (p > 0.05, ANOVA followed by 

Tukey’s test). 

 
 

[19] while Adams and co-workers analyzed samples 

of C. decurrens from southern Oregon, northern 

Oregon, and southern California [20]. Essential oils 

from cultivated samples of C. decurrens were reported 

from Poland [21], Corsica [18], Serbia [22], and 

Hungary [17]. The major components in these 

essential oils were consistently δ-3-carene, α-pinene, 

limonene, myrcene, terpinolene, and α-terpinyl 

acetate, but the variations in the major components 

can be visualized in a hierarchical cluster analysis 

(HCA, Fig. 10). 
 

There are three obvious clusters observed in the HCA 

dendrogram. Cluster 1 has α-pinene (32.0 ± 9.0%) and 

δ-3-carene (24.4 ± 9.8%) as the major components, 

Cluster 2 is dominated by δ-3-carene (35.5 ± 7.0%), and 

Cluster 3 is dominated by limonene (30.4 ± 10.3%). 

ANOVA analysis further illustrates the differences in 

these three clusters (Fig. 11). It is apparent that the 

chemical compositions are not necessarily influenced 

by geographical location. Samples #2 and #3 from this 

study are grouped with the samples from Adams et al. 

and von Rudloff, which is not surprising; they were 

all from native populations. However, C. decurrens 

sample #1 is found in Cluster 2, which is also 

populated by samples from Poland, Hungary, Corsica, 

and Serbia. 
 

3.3. Sequoia sempervirens 

Foliage from S. sempervirens was obtained from three 

individual trees growing in Paradise, California, USA.   
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Figure 10. Dendrogram obtained by agglomerative 

hierarchical cluster analysis (HCA) of the major chemical 

components of Calocedrus decurrens foliar essential oils. 

Maciej = samples from Poland [21], Bakó = samples from Hungary 

[17], This = samples from this study, Garcia = sample from Corsica 

[18], Milanović = sample from Serbia [22], Adams = samples from 

Oregon and California [20], von Rudloff = sample from northern 

California [19]. 

 

 
Figure 11. Average percentage compositions of the major 

components in Calocedrus decurrens essential oils. For each 

constituent, bars with the same numbers are not significantly 

different (p > 0.05, ANOVA followed by Tukey’s test). 

 

Hydrodistillation of the foliage gave colorless 

essential oils in yields of 2.72%, 2.49%, and 2.89% 

(w/w). Gas chromatographic analysis of the three 

essential oils identified 87 compounds, which 

accounted for 99.9%, 99.8%, and 98.5% of the total 

essential oil composition (Supplementary Table S4, 

Supplementary Fig. S3). The major components in the 

essential oils were α-pinene (10.1-18.8%), myrcene 

(3.4-6.7%), limonene (6.2-8.7%), β-phellandrene (3.5-

7.0%), γ-terpinene (2.5-7.2%), terpinen-4-ol (3.9-5.3%), 

germacrene B (5.4-8.2%), γ-eudesmol (3.6-6.5%), and 

α-eudesmol (4.1-8.7%) (Table 4). 
 
 

The foliar essential oils of S. sempervirens have been 

examined previously. Gregonis and co-workers 

analyzed S. sempervirens foliar essential oil from 

Oregon, USA, and found α-pinene (19.7%), limonene 

(10.1%), γ-terpinene (9.8%), and terpinen-4-ol (8.8%) 

to be the major components [27]. von Rudloff found a 

similar composition in a sample from northern 

California, USA, with α-pinene (24.9%) dominating, 

followed by β-phellandrene (9.9%), limonene (8.6%), 

γ-terpinene (6.2%), and terpinen-4-ol (5.6%), along 

with germacrene D (5.5%) [19]. Okamoto et al. carried 

out a seasonal foliage maturation study of S. 

sempervirens [28]. The major components in the late 

season (August) old foliage essential oil were α-

pinene (23.2%), γ-terpinene (10.1%), β-phellandrene 

(10.0%), myrcene (6.8%), and germacrene D (4.9%). 

Bakó and co-authors analyzed the foliar essential oils 

from three collections from Hungary [17]. There was 

some variation in the composition of these samples, 

but the major components were α-pinene (7.7-22.0%), 

γ-terpinene (3.8-15.6%), terpinen-4-ol (4.4-9.8%), β-

phellandrene (0.0-11.3%), α-terpinene (0.0-13.7%), 

sabinene (3.2-8.0%), and myrcene (2.6-6.5%). Thus, the 

foliar essential oil compositions of S. sempervirens are 

relatively similar, with the compositions composed 

largely of α-pinene (18.0 ± 5.8%), myrcene(5.2 ± 1.5%), 

limonene (6.6 ± 3.4%), β-phellandrene (7.1 ± 3.5%), γ-

terpinene (7.7 ± 3.9%), and terpinen-4-ol (5.5 ± 2.4%). 
 
 

As far as we are aware, this is the first report on the 

enantioselective analysis of S. sempervirens leaf 

essential oil. (–)-α-Pinene was the dominant 

enantiomer (91.6 ± 0.6%) in contrast to the wood 

essential oils [26] where the (+)-enantiomer was 

dominant (70.1% and 73.3%). (+)-Sabinene (96.1 ± 

0.2%), (–)-β-pinene (88.9 ± 0.2%), and (+)-limonene 

(87.9 ± 2.1%) were also predominant. (+)-Limonene 

(90.0% and 97.3%) also dominated the wood essential 

oil. Interestingly, the dominant enantiomer of  
 

https://www.currentsci.com/images/articlesFile/supplementary.1757952346.pdf
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Table 4. Major components (% of total) and enantiomeric distribution (enantiomer %) of chiral monoterpenoids in the foliar 

essential oils of Sequoia sempervirens. 
 

RIcalca RIdbb Compounds 
Major chemical components (%) 

S.s. #1 S.s. #2 S.s. #3 

934 933 α-Pinene 18.8 16.4 10.1 

972 972 Sabinene 4.4 3.5 2.2 

977 978 β-Pinene 1.5 1.3 0.9 

989 989 Myrcene 6.7 6.0 3.4 

1017 1018 α-Terpinene 1.2 1.2 0.3 

1030 1030 Limonene 8.5 8.7 6.2 

1032 1031 β-Phellandrene 7.0 6.8 3.5 

1058 1057 γ-Terpinene 7.2 6.3 2.5 

1087 1087 Terpinolene 2.3 2.2 1.1 

1183 1180 Terpinen-4-ol 4.1 3.9 5.3 

1197 1195 α-Terpineol 0.9 1.0 1.4 

1347 1346 α-Terpinyl acetate 2.4 2.5 3.8 

1390 1390 trans-β-Elemene 1.4 1.6 2.1 

1420 1418 (E)-β-Caryophyllene 1.1 1.3 1.7 

1430 1430 γ-Elemene 2.2 2.7 3.2 

1482 1483 Germacrene D 2.6 3.6 3.3 

1549 1549 α-Elemol 1.6 1.7 2.9 

1560 1557 Germacrene B 5.4 6.2 8.2 

1632 1632 γ-Eudesmol 3.6 4.2 6.5 

1655 1656 β-Eudesmol 1.6 1.8 5.5 

1656 1655 α-Eudesmol 2.6 2.6 3.1 

RIcalcc RIdbd Enantiomers 
Enantiomeric distribution (%) 

S.s. #1 S.s. #2 S.s. #3 

972 976 (–)-α-Pinene 92.2 91.6 91.0 

981 982 (+)-α-Pinene 7.8 8.4 9.0 

1020 1021 (+)-Sabinene 95.9 96.4 96.0 

1030 1030 (–)-Sabinene 4.1 3.6 4.0 

1027 1027 (+)-β-Pinene 11.2 10.9 11.3 

1031 1031 (–)-β-Pinene 88.8 89.1 88.7 

1075 1073 (–)-Limonene 13.8 12.8 9.7 

1079 1081 (+)-Limonene 86.2 87.2 90.3 

1083 1083 (–)-β-Phellandrene 71.6 71.2 63.4 

1088 1089 (+)-β-Phellandrene 28.4 28.8 36.6 

1297 1297 (+)-Terpinen-4-ol 69.9 70.6 70.8 

1301 1300 (–)-Terpinen-4-ol 30.1 29.4 29.2 

1347 1347 (–)-α-Terpineol 66.4 67.8 68.2 

1355 1356 (+)-α-Terpineol 33.6 32.2 31.8 
a RIcalc = Retention index values determined with respect to a homologous series of n-alkanes on a ZB-5ms column. b RIdb = Reference 

retention index values from the databases [36–39]. c RIcalc = Retention index values determined with respect to a homologous series of n-

alkanes on a Restek B-Dex 325 capillary column. d RIdb = Retention index from our in-house database prepared using commercially 

available standards.  
 
 

 

α-terpineol was the (–)-enantiomer in the leaf essential 

oil (67.5 ± 0.9%), whereas the (+)-enantiomer 

predominated in the wood essential oil (74.7% and 

72.2%). 
 

3.4. Thuja plicata 

 

Two samples of T. plicata were collected from the  

Coastal Range of Oregon, USA. Hydrodistillation of 

the foliage gave pale-yellow essential oils in 3.20% 

and 4.48% (w/w) yield. 

The major components in the essential oil are  
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Table 5. Major components (% of total) and enantiomeric distribution (enantiomer %) of chiral monoterpenoids in the foliar 

essential oils of Thuja plicata. 
 

RIcalca RIdbb Compounds 
Major chemical components (%) 

T.p. #1 T.p. #2 

933 933 α-Pinene 1.1 1.4 

972 971 Sabinene 3.2 2.6 

989 989 Myrcene 1.5 1.8 

1028 1030 Limonene 0.8 0.9 

1056 1057 γ-Terpinene 1.1 1.1 

1107 1105 α-Thujone 65.9 62.5 

1120 1118 β-Thujone 10.2 12.1 

1181 1180 Terpinen-4-ol 3.4 3.1 

2319 --- 15-Beyeren-19-yl acetate c 1.8 3.7 

RIcalcd RIdbe Enantiomers 
Enantiomeric distribution (%) 

T.p. #1 T.p. #2 

977 976 (–)-α-Pinene 2.8 1.8 

981 982 (+)-α-Pinene 97.2 98.2 

1018 1021 (+)-Sabinene 100.0 100.0 

nd f 1030 (–)-Sabinene 0.0 0.0 

1076 1073 (–)-Limonene 3.8 3.2 

1082 1081 (+)-Limonene 96.2 96.8 

nd f 1213 (+)-α-Thujone 0.0 0.0 

1220 1222 (–)-α-Thujone 100.0 100.0 

1229 1230 (+)-β-Thujone 100.0 100.0 

nd f na g (–)-β-Thujone 0.0 0.0 

1296 1297 (+)-Terpinen-4-ol 73.4 73.9 

1300 1300 (–)-Terpinen-4-ol 26.6 26.1 
a RIcalc = Retention index values determined with respect to a homologous series of n-alkanes on a ZB-5ms column. b RIdb = Reference 

retention index values from the databases [36–39]. c Identification tentative; reference RI value not available. d RIcalc = Retention index 

values determined with respect to a homologous series of n-alkanes on a Restek B-Dex 325 capillary column. e RIdb = Retention index 

from our in-house database prepared using commercially available standards. f nd = compound not detected. g na = standard compound 

not available. 

 
 

listed in Table 5. A total of 92 compounds were 

identified in the essential oils accounting for 99.5% 

of the total composition (Supplementary Table S5, 

Supplementary Fig. S4). 
 

The major components of the T. plicata foliar essential 

oils in this study are comparable to those in previous 

investigations [32, 34, 41–44]. The major components 

in this study were (–)-α-thujone (65.9% and 62.5%), 

(+)-β-thujone (10.2% and 12.1%), (+)-sabinene (3.2% 

and 2.6%), terpinen-4-ol (3.4% and 3.1%, 

predominantly (+)-enantiomer), and 15-beyeren-19-yl 

acetate (1.8% and 2.7%). 
 

3.5. Enantiomeric distribution 

In addition to this study, enantioselective GC-MS 

analyses have been carried out on other members of 

the Cupressaceae, including Chamaecyparis lawsoniana 

(A. Murray bis) Parl [32], Juniperus horizontalis 

Moench [45], Juniperus occidentalis Hook. [46], 

Juniperus osteosperma (Torr.) Little [47], Juniperus 

scopulorum Sarg. [45], as well as a previous study of T. 

plicata [32]. The enantiomeric distributions of 

Cupressaceae species are summarized in 

Supplementary Table S6. 
 

With these data on the Cupressaceae, the distributions 

of chiral monoterpenoids in the family can be 

generalized and compared those of the Pinaceae [32–

34, 48–53]. When observed, (–)-α-thujene is the 

exclusive enantiomer in both the Cupressaceae and 

Pinaceae. (–)-α-Pinene is variable in the Pinaceae as 

well as in the Cupressaceae; it depends on the genus 

(e.g., the (–)-enantiomer is major in C. nootkatensis and 

S. sempervirens, but the (+)-enantiomer is major in 

https://www.currentsci.com/images/articlesFile/supplementary.1757952346.pdf
https://www.currentsci.com/images/articlesFile/supplementary.1757952346.pdf
https://www.currentsci.com/images/articlesFile/supplementary.1757952346.pdf
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Juniperus spp. and T. plicata). When observed, (–)-

camphene is the major enantiomer in the Pinaceae, but 

depends on the genus in the Cupressaceae (e.g., (–)-

camphene in C. nootkatensis and S. sempervirens, but 

(+)-camphene in Juniperus spp. and T. plicata). (–)-

Sabinene is the major enantiomer in Pinus spp. [52], 

whereas (+)-sabinene dominates in Tsuga heterophylla 

[32] and (+)-sabinene seems to dominate in the 

Cupressaceae. (–)-β-Pinene is the major enantiomer in 

the Pinaceae, but varies in the Cupressaceae, 

depending on the genus, (+)-enantiomer in Juniperus 

spp. and T. plicata, but (–)-enantiomer in C. 

nootkatensis, and C. decurrens. When observed, (+)-δ-3-

carene was the exclusive enantiomer in both the 

Cupressaceae and the Pinaceae. α-Phellandrene was 

nearly racemic in S. sempervirens, but variable in Abies 

spp. [53]. (+)-α-Phellandrene was the dominant 

enantiomer in Pinus monticola [52] and Tsuga 

heterophylla [32]. (+)-Limonene is the major 

enantiomer in the Cupressaceae, while (–)-limonene 

predominates in the Pinaceae. Although variable, (–)-

β-phellandrene generally predominates in both the 

Cupressaceae and Pinaceae. When observed (–)-α-

thujone and (+)-β-thujone were the only enantiomers 

observed. (–)-Linalool was the major enantiomer in C. 

decurrens (Cupressaceae) as well as in P. edulis 

(Pinaceae) [51], but (+)-linalool was major in J. 

horizontalis and J. scopulorum. When observed, (+)-cis-

sabinene hydrate and (+)-trans-sabinene hydrate were 

the major enantiomers in the Cupressaceae. Only (+)-

camphor was observed in Juniperus spp., while (–)-

camphor was observed in Abies grandis [53]. (–)-

Terpinen-4-ol was the major enantiomer in Abies spp. 

[53] and Pinus spp. [52], but (+)-terpinen-4-ol is 

generally predominant in most species of the 

Cupressaceae. Likewise, (–)-α-terpineol 

predominated in Abies spp. [53] and Pinus spp. [52], 

but was variable in the Cupressaceae, with the (–)-

enantiomer predominating in C. nootkatensis and S. 

sempervirens, and (+) in other genera of the family. (–)-

Borneol seems to predominate in both the 

Cupressaceae and Pinaceae, but note that the 

retention index values are very similar. When 

observed, (+)-verbenone (Juniperus spp.) and (–)-

piperitone (C. nootkatensis and C. decurrens) were the 

dominant enantiomers in the Cupressaceae. 
 

4. Conclusions 
In this study, the foliar essential oils of Callitropsis 

nootkatensis, Calocedrus decurrens, Sequoia sempervirens, 

and Thuja plicata have been obtained and analyzed by 

GC-MS and chiral GC-MS. The compositions of these 

Cupressaceae members are comparable to previously 

published works and serve to corroborate the volatile 

phytochemistry of these species. Based on the 

essential oil compositions, four chemotypes of C. 

nootkatensis and three chemotypes of C. decurrens have 

been identified. In addition, the enantiomeric 

distributions of chiral monoterpenoids in these 

species have been determined and identified some 

trends in the family. (+)-Sabinene (97.0 ± 9.2%) seems 

to dominate in the Cupressaceae while (‒)-sabinene is 

dominant in the Pinaceae. When observed, (+)-δ-3-

carene is the exclusive enantiomer in both the 

Cupressaceae and the Pinaceae. (+)-Limonene (95.0 ± 

4.8%) was the major enantiomer in the Cupressaceae, 

while (‒)-limonene predominated in the Pinaceae. (‒)-

β-Phellandrene (87.6 ± 16.3%) generally predominates 

in both the Cupressaceae and the Pinaceae. (+)-

Terpinen-4-ol (68.1 ± 7.7%) is generally predominant 

in most species of the Cupressaceae. (‒)-Borneol 

seems to predominate in both the Cupressaceae 

(100%) and Pinaceae (99.6%). Several monoterpenes 

show variability in their enantiomeric distribution 

depending on the genus. The enantioselective 

analyses of members of the Cupressaceae serve as 

additional phytochemical characterizations of 

members of the family. Furthermore, enantiomeric 

distribution information may be useful if essential oils 

are commercialized (e.g., biological activities of the 

essential oils, detection of contamination or 

adulteration). However, additional research on these 

and other members of the Cupressaceae is necessary 

to confirm the trends observed in the present study. 
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foliar essential oils.  

Figure S2. Gas chromatograms of Calocedrus decurrens 
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