Short Communication
Jayashree Patil
Jayashree Patil
Department of Mathematics, Vasantrao Naik Mahavidyalaya, Cidco,
Aurangabad, India. E-mail: jv.patil29@gmail.com
Basel Hardan
Basel Hardan
Department of Mathematics, Dr. Babasaheb Ambedkar Marathwada
University, India. E-mail: bassil2003@gmail.com
Ahmed Hamoud
Ahmed Hamoud
Corresponding Author
Department of Mathematics, Taiz University, Taiz P.O. Box 6803, Yemen.
E-mail: ahmed.hamoud@taiz.edu.ye
Kirtiwant Ghadle
Kirtiwant Ghadle
Department of Mathematics, Dr. Babasaheb Ambedkar Marathwada University, India. E-mail: ghadle.maths@bamu.ac.in
Alaa Abdallah
Alaa Abdallah
Department of Mathematics, Dr. Babasaheb Ambedkar Marathwada
University, India. E-mail: maths.aab@bamu.ac.in
Abstract
In this paper,
Cauchy-Schwarz inequality on n-inner product spaces is reproved, and notions of
orthogonality on n-normed spaces are introduced. This is the first approach to
orthogonality types in such spaces.
Abstract Keywords
Cauchy- Schwarz inequality; Inner product spaces;
normed spaces
Abstract
In this paper,
Cauchy-Schwarz inequality on n-inner product spaces is reproved, and notions of
orthogonality on n-normed spaces are introduced. This is the first approach to
orthogonality types in such spaces.
Keywords
Cauchy- Schwarz inequality; Inner product spaces;
normed spaces
References
1. Alonso,
J. Uniqueness Properties of Isosceles Orthogonality in Normed Linear Spaces. Ann.
Sci. Math. Qu. ebec. 1994,
18(1), 25-38.
2. Ahire,
Y.M.; Patil1, J.; Hardan, B.; Hamoud, A.A.; Bachhav, A. Recent Advances on
Fixed Point Theorems, Bull. Pure Appl. Sci. Sect. E Math.
Stat. 2022, 41(1), 1-11.
3. Patil,
J.; Hardan, B.; Hamoud, A.; Bachhav, A. ; Emadifar, H. A new result on Branciari metric space using
(α; γ)-contractive mappings. Topol.
Algebra Appl. 2022, 10(1),
103-112.
4. Cho,
Y.J.; Kim. S. S. Gateaux Derivatives and 2-Inner Product Spaces. Glas. Mat.
Ser. III. 1983, (47), 197-203.
5. Gunawan,
H. On n-Inner Products, n-Norms and the Cauchy Schwarz Inequality. Sci.
Math. JPN. 2002, 55, 53-60.
6. Hamoud,
A. A.; Patil, J.; Hardan, B.; Bachhav, A;
Emadifar, H.; Guunerhan, H. Generalizing contractive mappings on
b-rectangular metric space. Adv. Math. Phys. 2022, 1-10.
7. Hardan,
B.; Patil, J.; Chaudhari A.; Bachhav, A.
Approximate fixed points for n-Linear functional by- nonexpansive
Mappings on -Banach spaces. J. Mat. Anal. Model. 2020, 1(1), 20-32.
8. Hardan,
B.; Patil, J.; Chaudhari A.; Bachhav, A. Caristi Type Fixed Point Theorems
ofContractive Mapping with Application. One Day National Conference on Recent
AdvancesIn Sciences Held on: 13th February 2020.
609-614.
9. Khan,
A.; Siddiqui, A. B-orthogonality in 2-Normed Space, Bull. Calcutta Math.
Soc. 1982, 74, 216-222.
10. Meyer,
C.D. Matrix analysis and applied linear algebra, Ed.1, SIAM. 2004.
11. Patil,
J.; Hardan, B.; Hamoud, A. A.; Bachhav, A.; Emadifar, H.; Ghanizadeh, A.,
Edalatpanah, S.A.; Azizi, H. On (η,γ)_(f,g)-Contractions in Extended
b-Metric Spaces. Adv. Math. Phys. 2022, 1-8.
12. Patil,
J.; Hardan, B. On Fixed Point Theorems
in Complete Metric Space. J. Comput. Math. Sci. 2019, 10, 1419-1425.
This work is licensed under the
Creative Commons Attribution
4.0
License (CC BY-NC 4.0).
Abstract
In this paper,
Cauchy-Schwarz inequality on n-inner product spaces is reproved, and notions of
orthogonality on n-normed spaces are introduced. This is the first approach to
orthogonality types in such spaces.
Abstract Keywords
Cauchy- Schwarz inequality; Inner product spaces;
normed spaces
This work is licensed under the
Creative Commons Attribution
4.0
License (CC BY-NC 4.0).
This work is licensed under the
Creative Commons Attribution 4.0
License.(CC BY-NC 4.0).