Research Article
Olufunke Onaadepo
Olufunke Onaadepo
Department of Human Physiology, Faculty of Basic Medical Sciences, University of Abuja. Nigeria.
Email: olufunke.onaadepo@uniabuja.edu.ng
Busayo Babawale Roqeeb
Busayo Babawale Roqeeb
Department of Physiology, University of Ilesa, Ilesa, Osun state, Nigeria.
Email: roqeeb_babawale@unilesa.edu.ng
Ejike Daniel Eze
Ejike Daniel Eze
Department of Physiology, School of Medicine, Kabale University, Kabale, Uganda.
Email: daneze4@gmail.com
Nachamada Solomon Emmanuel*
Nachamada Solomon Emmanuel*
Corresponding
Author
Department
of Human Physiology, College of Medical Sciences, Faculty of Basic Medical
Sciences, Ahmadu Bello University, Zaria. Kaduna, Nigeria
Email: nesolomon@yahoo.com, Tel: +23408086313918
Abstract
Obesity is a major public health concern characterized by
excessive body fat, which increases the risk of numerous health conditions,
including heart disease, diabetes, high blood pressure, and certain cancers.
Addressing obesity is crucial for improving overall health and well-being. In
this study, thirty female albino Wistar rats, weighing between 190-200 g, were
utilized to investigate the effects of Ficus exasperata on
olanzapine-induced obesity. After a
two-week acclimatization period, obesity was induced in the designated group
using olanzapine (4 mg/kg) via oral gavage for 28 days. The rats were then
divided into five groups (n=6): normal control, obese-untreated, non-obese
treated with Ficus exasperata (100 mg/kg), obese treated with Ficus
exasperata (100 mg/kg), and obese treated with orlistat (100 mg/kg).
Treatments were administered orally for 28 days. At the end of the study, the
animals were sacrificed, and blood samples were collected for serum analysis. The extract of Ficus exasperata demonstrates
significant potential in improving various cardiometabolic indexes, BMI
[Underweight: BMI less than 18.5; normal weight: BMI 18.5 - 24.9; overweight:
BMI 25.0 - 29.9; obesity (Class 1): BMI 30.0 - 34.9; obesity (Class 2): BMI
35.0 - 39.9; extreme obesity (Class 3): BMI 40.0 and above], weight management,
and leptin regulation. Ficus exasperata extract offers promising
therapeutic benefits for improving cardiometabolic health, managing body
weight, and regulating leptin, making it a valuable addition to natural health
interventions.
Keywords
Ficus exasperate, electrolytes, lipid profiles, olanzapine-induced obesity, ethanol leaf extract.
References
1.
Landi, F.; Calvani, R.; Picca, A.; Tosato, M.; Martone, A. M.;
Ortolani, E.; Sisto, A.; Serafini, E.; Desideri, G.; Fuga, M. T.; Marzetti, E.
Body Mass Index is Strongly Associated with Hypertension: Results from the
Longevity Check-Up 7+ Study. Nutrients. 2018, 10(12), 1976. https://doi.org/10.3390/nu10121976
2.
Lin, X.; Li, H. Obesity: Epidemiology, Pathophysiology, and
Therapeutics. Frontiers in Endocrinology. 2021, 12, 706978. https://doi.org/10.3389/fendo.2021.706978
3.
Shafiee, A.; Nakhaee, Z.; Bahri, R.A.; et al. Global prevalence of
obesity and overweight among medical students: a systematic review and
meta-analysis. BMC Public Health. 2024, 24, 1673. https://doi.org/10.1186/s12889-024-19184-4
4.
Kranjac, A. W.; Kranjac, D. Explaining adult obesity, severe
obesity, and BMI: Five decades of change. Heliyon. 2024, 9(5), e16210.
https://doi.org/10.1016/j.heliyon.2023.e16210
5.
Jaacks, LM.; Vandevijvere, S.; Pan A, McGowan, CJ.;
Wallace, C.; Imamura, F.; Mozaffarian, D.; Swinburn, B.; Ezzati, M. The obesity
transition: stages of the global epidemic. Lancet Diabetes Endocrinol. 2019, 7(3),
231-240. doi:10.1016/S2213-8587(19)30026-9.
6.
Haththotuwa, R.
N.; Wijeyaratne, C. N.; Senarath, U. Worldwide epidemic of obesity. Obesity and
Obstetrics (Second Edition). 2019, 3-8.
https://doi.org/10.1016/B978-0-12-817921-5.00001-1
7.
Boutari, C.;
Mantzoros, C. S. A 2022 update on the epidemiology of obesity and a call to
action: As its twin COVID-19 pandemic appears to be receding, the obesity and
dysmetabolism pandemic continues to rage on. Metabolism. 2022, 133, 155217.
https://doi.org/10.1016/j.metabol.2022.155217
8.
Lumu, W.; Bahendeka, S.; Wesonga, R.; Kibirige, D.; Kasoma, R. M.;
Ssendikwanawa, E. Atherogenic index of plasma and its cardiovascular risk
factor correlates among patients with type 2 diabetes in Uganda. African Health
Sciences. 2023, 23(1), 515. https://doi.org/10.4314/ahs.v23i1.54.
9.
Csige, I.; Ujvárosy, D.; Szabó, Z.; Lőrincz, I.; Paragh, G.;
Harangi, M.; Somodi, S. The Impact of Obesity on the Cardiovascular System.
Journal of Diabetes Research. 2018, 3407306.
https://doi.org/10.1155/2018/3407306
10.
Drwiła, D.; Rostoff, P.; Nessler, J.; Konduracka, E. Prognostic
value of non-traditional lipid parameters: Castelli Risk Index I, Castelli Risk
Index II, and triglycerides to high-density lipoprotein cholesterol ratio among
patients with non-ST-segment elevation myocardial infarction during 1 year
follow-up. Kardiologiia. 2022, 62(9), 60-66.
https://doi.org/10.18087/cardio.2022.9.n2037.
11.
Qin, M.; Chen, B. Association of atherogenic index of plasma with
cardiovascular disease mortality and all-cause mortality in the general US
adult population: results from NHANES 2005–2018. Cardiovascular Diabetology.
2024, 23, 255. https://doi.org/10.1186/s12933-024-02359-z.
12.
Picó, C.; Palou, M.; Pomar, C. A.; et al. Leptin as a key
regulator of the adipose organ. Reviews in Endocrine and Metabolic Disorders.
2022, 23, 13–30. https://doi.org/10.1007/s11154-021-09687-5.
13.
Obradovic, M.; Sudar-Milovanovic, E.; Soskic, S.; Essack, M.;
Arya, S.; Stewart, A. J.; Gojobori, T.; Isenovic, E. R. Leptin and Obesity:
Role and Clinical Implication. Frontiers in Endocrinology. 2021, 12, 585887. https://doi.org/10.3389/fendo.2021.585887
14.
Abotsi, W. M. K.; Woode, E.; Ainooson, G. K.; Amo-Barimah, A. K.;
Boakye-Gyasi, E. Antiarthritic and antioxidant effects of the leaf extract of
Ficus exasperata P. Beauv. (Moraceae). Pharmacognosy Research. 2010, 2(2), 89. https://doi.org/10.4103/0974-8490.62958.
15.
Lawal, I. O.; Borokini, T. I.; Oyeleye, A.; Williams, O. A.;
Olayemi, J. O. Evaluation of extract of Ficus exasperata Vahl root bark for
antimicrobial activities against some strains of clinical isolates of bacterial
and fungi. International Journal of Modern Botany. 2012, 2(1), 6-12. https://doi.org/10.5923/j.ijmb.20120201.02.
16.
Akinloye, D. I.; Ugbaja, R. N. Potential nutritional benefits of
Ficus exasperata Vahl leaf extract. Nutrire. 2022, 47, 6. https://doi.org/10.1186/s41110-022-00157-9.
17.
Kofie, W.; Osman, H.; Bekoe, S. O. Phytochemical properties of
extracts and isolated fractions of leaves and stem bark of Ficus exasperata. World Journal of Pharmacy and Pharmaceutical
Sciences. 2015, 4(12), 91-101.
18.
Novelli, E. L. B.; Diniz, Y. S.; Novelli
Filho, J. L. V. et al. (2007). Anthropometrical parameters and markers of
obesity in rats. Laboratory
Animals. 2007, 41(1), 37-41. https://doi.org/10.1258/002367707779399518.
19.
Tobar Leitão, S. A.; Soares, D. D. S.; Carvas Junior, N.; Zimmer,
R.; Ludwig, N. F.; Andrades, M. (2021). Study of anaesthetics for euthanasia in
rats and mice: A systematic review and meta-analysis on the impact upon
biological outcomes (SAFE-RM). Life Sciences. 2021, 284, 119916. https://doi.org/10.1016/j.lfs.2021.119916.
20.
Bhardwaj, S.; Bhattacharjee, J.; Bhatnagar, M. K.; Tyagi, S.
Atherogenic Index of Plasma, Castelli Risk Index and Atherogenic Coefficient-
New Parameters in Assessing Cardiovascular Risk. International Journal of
Pharmacy and Biological Sciences. 2013, 3(3), 359-364. https://doi.org/10.5923/j.ijpbs.20120201.02.
21.
Klop, B.; Elte, J. W.; Cabezas, M. C. Dyslipidemia in Obesity:
Mechanisms and Potential Targets. Nutrients. 2013, 5(4), 1218. https://doi.org/10.3390/nu5041218.
22.
Vargas, H. O.; Nunes, S. O. V.; Barbosa, D. S.; Vargas, M. M.;
Cestari, A.; Dodd, S.; Venugopal, K.; Maes, M.; Berk, M. Castelli risk indexes
1 and 2 are higher in major depression but other characteristics of the
metabolic syndrome are not specific to mood disorders. Life Sciences. 2014,
102(1), 65-71. https://doi.org/10.1016/j.lfs.2014.02.033.
23.
Raaj, I.; Thalamati, M.; Gowda, M. N. V.; et al. The Role of the
Atherogenic Index of Plasma and the Castelli Risk Index I and II in
Cardiovascular Disease. Cureus. 2024, 16(11), e74644. https://doi.org/10.7759/cureus.74644.
24.
Anandkumar, M. H.; Chandrashekhar, D. M.; Jayalakshmi, M. K.;
Prashanth Babu, G. Anthropometric measures of obesity as correlates of
atherogenic index of plasma in young adult females. National Journal of
Physiology, Pharmacy and Pharmacology. 2019, 10(1). https://doi.org/10.5455/njppp.2020.10.0933518112019
25.
Wang, C.; Chang, L.; Wang, J.; Xia, L.; Cao, L.; Wang, W.; Xu, J.;
Gao, H. Leptin and risk factors for atherosclerosis: A review. Medicine. 2023,
102(46), e36076. https://doi.org/10.1097/MD.0000000000036076.
26.
Anigboro, A. A.; Avwioroko, O. J.; Ohwokevwo, O. A.; Pessu, B.
Bioactive components of Ficus exasperata, Moringa oleifera and Jatropha
tanjorensis leaf extracts and evaluation of their antioxidant properties.
EurAsian Journal of BioSciences. 2019, 13, 1763-1769.
27.
Wani, P. A.; Adesina, O. F.; Wahid, S.; Salami, O. R.; Jan, N.
Antioxidant phytochemical screening and antimicrobial activity of Ficus
exasperata against pathogens in Nigeria. Asian Journal of Biological Sciences.
2019, 12(3), 251-257. https://doi.org/10.3923/ajbs.2019.251.257.
28.
Bays, H. E.; Toth, P. P.; Kris-Etherton, P. M.; Abate, N.; Aronne,
L. J.; Brown, W. V.; Gonzalez-Campoy, J. M.; Jones, S. R.; Kumar, R.; La Forge,
R.; Samuel, V. T. Obesity, adiposity, and dyslipidemia: A consensus statement
from the National Lipid Association. Journal of Clinical Lipidology. 2013,
7(4), 304-383. https://doi.org/10.1016/j.jacl.2013.04.001.
29.
Stadler, J. T.; Marsche, G. Obesity-Related Changes in
High-Density Lipoprotein Metabolism and Function. International Journal of
Molecular Sciences. 2020 Nov 26;21(23):8985. doi: 10.3390/ijms21238985.
30.
Ye, J. Mechanisms of insulin resistance in obesity. Frontiers in
Medicine. 2013 Mar;7(1):14-24. doi: 10.1007/s11684-013-0262-6.
31.
Ahmed, B.; Sultana, R.; Greene, M. W. Adipose tissue and insulin
resistance in obese. Biomedicine & Pharmacotherapy. 2021, 137, 111315. https://doi.org/10.1016/j.biopha.2021.111315.
32.
Tong, Y.; Xu, S.; Huang, L.; Chen, C. Obesity and insulin
resistance: Pathophysiology and treatment. Drug Discovery Today. 2022, 27(3),
822-830. https://doi.org/10.1016/j.drudis.2021.11.001.
33.
Taiwo, I. A.; Adebesin, O. A.; Shittu, A. F.; Lawal, R. I.;
Odeigah, P. G. C. Glycaemic activity of Ficus exasperata in
fructose-induced glucose intolerance in rats. Researcher. 2010, 2(1), 80.
34.
Moonishaa, T. M.; Nanda, S. K.; Shamraj, M.; Sivaa, R.; Sivakumar,
P.; Ravichandran, K. Evaluation of Leptin as a Marker of Insulin Resistance in
Type 2 Diabetes Mellitus. International Journal of Applied and Basic Medical
Research. 2017, 7(3), 176. https://doi.org/10.4103/ijabmr.IJABMR_278_16
35.
Gruzdeva, O.; Borodkina, D.; Uchasova, E.; Dyleva, Y.; Barbarash,
O. Leptin resistance: underlying mechanisms and diagnosis. Diabetes Metabolic
Syndrome and Obesity. 2019, 12:191-198. doi: 10.2147/DMSO.S182406.
36.
Kumar, R.; Mal, K.; Razaq, M. K.; Magsi, M.; Memon, M. K.; Memon,
S.; Afroz, M. N.; Siddiqui, H. F.; & Rizwan, A. Association of Leptin with
Obesity and Insulin Resistance. Cureus. 2020, 12(12), e12178.
https://doi.org/10.7759/cureus.12178.
37.
Huang, J.; Hei, G.; Yang, Y.; Liu, C.; Xiao, J.; Long, Y.; et al.
Increased Appetite Plays a Key Role in Olanzapine-Induced Weight Gain in
First-Episode Schizophrenia Patients. Frontiers in Pharmacology. 2020, 11,
540469. https://doi.org/10.3389/fphar.2020.00739.
38.
Graham, K. A.; Perkins, D. O.; Edwards, L. J.; Barrier, R. C. Jr;
Lieberman, J. A.; Harp, J. B. Effect of olanzapine on body composition and
energy expenditure in adults with first-episode psychosis. American Journal of
Psychiatry. 2005, 162(1), 118-23. https://doi.org/10.1176
39.
Park, S.; Yi, K. K.; Kim, S.; Hong, J. P. Effects of ziprasidone
and olanzapine on body composition and metabolic parameters: An open-label
comparative pilot study. Behavioral and Brain Functions. 2013, 9, 27.
https://doi.org/10.1186/1744-9081-9-27.
40.
Nimura, S.; Yamaguchi, T.; Ueda, K.; Kadokura, K.; Aiuchi, T.;
Kato, R.; Obama, T.; Itabe, H. Olanzapine promotes the accumulation of lipid
droplets and the expression of multiple perilipins in human adipocytes.
Biochemical and Biophysical Research Communications. 2015, 467(4), 906-912. https://doi.org/10.1016/j.bbrc.2015.10.045.
41.
Moseti, D.; Regassa, A.; Kim, K. Molecular Regulation of
Adipogenesis and Potential Anti-Adipogenic Bioactive Molecules. International
Journal of Molecular Sciences. 2016, 17(1), 124. https://doi.org/10.3390/ijms17010124.
42.
Mota de Sá, P.; Richard, A. J.; Hang, H.; Stephens, J. M.
Transcriptional Regulation of Adipogenesis. Comprehensive Physiology. 2017, 7(2):635-674.
doi: 10.1002/cphy.c160022.
43.
He, L.; Su, Z.; Wang, S. The anti-obesity effects of polyphenols:
A comprehensive review of molecular mechanisms and signal pathways in
regulating adipocytes. Frontiers in Nutrition. 2024, 11, 1393575. https://doi.org/10.3389/fnut.2024.1393575.
44.
Langin, D. Adipose tissue lipolysis as a metabolic pathway to
define pharmacological strategies against obesity and the metabolic syndrome.
Pharmacological Research. 2006, 53(6):482-91. doi: 10.1016/j.phrs.2006.03.009.
45.
Klok, M. D.; Jakobsdottir, S.; Drent, M. L. The role of leptin and
ghrelin in the regulation of food intake and body weight in humans: a review.
Obesity Reviews. 2007, 8(1):21-34. doi: 10.1111/j.1467-789X.2006.00270.x.
46.
Miller, G. D. Appetite Regulation: Hormones, Peptides, and
Neurotransmitters and Their Role in Obesity. American Journal of Lifestyle
Medicine. 2017, 13(6):586-601. doi: 10.1177/1559827617716376.
47.
Matsuo, T.; Omori, Y.; Tomita, T.; Sadzuka, Y. Olanzapine enhances
adipogenesis and suppresses lipolysis in 3T3 L1 adipocytes under low glucose
and weak differentiation/maturation conditions. Experimental and Therapeutic
Medicine. 2022, 24(5), 647. https://doi.org/10.3892/etm.2022.11584.
48. Murawska-Ciałowicz, E. Leptin—A Potential Bridge between Fat Metabolism and the Brain’s Vulnerability to Neuropsychiatric Disorders: A Systematic Review. Journal of Clinical Medicine. 2021, 10(23), 5714. https://doi.org/10.3390/jcm10235714
49. Čolak, E.; Pap, D. The role of oxidative stress in the development of obesity and obesity-related metabolic disorders. Journal of Medical Biochemistry. 2021, 26;40(1):1-9. doi: 10.5937/jomb0-24652.

This work is licensed under the
Creative Commons Attribution
4.0
License (CC BY-NC 4.0).
Abstract
Obesity is a major public health concern characterized by
excessive body fat, which increases the risk of numerous health conditions,
including heart disease, diabetes, high blood pressure, and certain cancers.
Addressing obesity is crucial for improving overall health and well-being. In
this study, thirty female albino Wistar rats, weighing between 190-200 g, were
utilized to investigate the effects of Ficus exasperata on
olanzapine-induced obesity. After a
two-week acclimatization period, obesity was induced in the designated group
using olanzapine (4 mg/kg) via oral gavage for 28 days. The rats were then
divided into five groups (n=6): normal control, obese-untreated, non-obese
treated with Ficus exasperata (100 mg/kg), obese treated with Ficus
exasperata (100 mg/kg), and obese treated with orlistat (100 mg/kg).
Treatments were administered orally for 28 days. At the end of the study, the
animals were sacrificed, and blood samples were collected for serum analysis. The extract of Ficus exasperata demonstrates
significant potential in improving various cardiometabolic indexes, BMI
[Underweight: BMI less than 18.5; normal weight: BMI 18.5 - 24.9; overweight:
BMI 25.0 - 29.9; obesity (Class 1): BMI 30.0 - 34.9; obesity (Class 2): BMI
35.0 - 39.9; extreme obesity (Class 3): BMI 40.0 and above], weight management,
and leptin regulation. Ficus exasperata extract offers promising
therapeutic benefits for improving cardiometabolic health, managing body
weight, and regulating leptin, making it a valuable addition to natural health
interventions.
Abstract Keywords
Ficus exasperate, electrolytes, lipid profiles, olanzapine-induced obesity, ethanol leaf extract.

This work is licensed under the
Creative Commons Attribution
4.0
License (CC BY-NC 4.0).

Editor-in-Chief

This work is licensed under the
Creative Commons Attribution 4.0
License.(CC BY-NC 4.0).