Review Article
Irena Kostova
Irena Kostova
Department of Chemistry, Faculty of
Pharmacy, Medical University-Sofia, 2 Dunav St., Sofia 1000, Bulgari. E-mail: irenakostova@yahoo.com
Abstract
The biogenic metals (Na, K,
Mg, Ca, Mn, Fe, Co, Cu, Zn and Mo) and their compounds are widely studied. Basic
multidisciplinary research in medicinal inorganic chemistry and bioinorganic
chemistry contributes to the development of pharmaceuticals with potential
future medical application, therapeutics, and the health benefits therein.
Consideration and research to control the action of biogenic chemical elements and their compounds in
the living organisms are crucial for their possible useful application and the
key to circumventing their toxicity. The biogenic metals have various
physical and chemical properties consistent with their location in the periodic
table, that is why their biological roles are different. Their typical chemical
properties involve the formation of coordination complexes and
oxidation-reduction reactions. The current
review focuses upon the functions of biogenic metals in living systems, their
food abundance, including the utility of these elements and their compounds in medicinal therapy and
diagnosis.
Keywords
Biogenic metals, food abundance, biological role, therapeutic
and diagnostic agents
Abstract
The biogenic metals (Na, K,
Mg, Ca, Mn, Fe, Co, Cu, Zn and Mo) and their compounds are widely studied. Basic
multidisciplinary research in medicinal inorganic chemistry and bioinorganic
chemistry contributes to the development of pharmaceuticals with potential
future medical application, therapeutics, and the health benefits therein.
Consideration and research to control the action of biogenic chemical elements and their compounds in
the living organisms are crucial for their possible useful application and the
key to circumventing their toxicity. The biogenic metals have various
physical and chemical properties consistent with their location in the periodic
table, that is why their biological roles are different. Their typical chemical
properties involve the formation of coordination complexes and
oxidation-reduction reactions. The current
review focuses upon the functions of biogenic metals in living systems, their
food abundance, including the utility of these elements and their compounds in medicinal therapy and
diagnosis.
Keywords
Biogenic metals, food abundance, biological role, therapeutic
and diagnostic agents
References
1.
Kostova, I.; Soni, R.K. Bioinorganic Chemistry. Shree Publishers &
Distributors: New Delhi, India, 2011.
2.
Goswami, A.K.; Kostova, I. Medicinal and
Biological Inorganic Chemistry. Walter de Gruyter GmbH & Co KG: Berlin,
Germany, 2022.
3.
Franz, K.J.;
Metzler-Nolte, N. Introduction: metals in medicine. Chem. Rev., 2019, 119,
727–729.
4.
Gasser, G. Metal
complexes and medicine: a successful combination. Chimia, 2015, 69, 442–446.
5.
Mjos, K.D.; Orvig, C.
Metallodrugs in medicinal inorganic chemistry. Chem. Rev., 2014, 114,
4540–4563.
6.
David, S.S.; Meggers,
E. Inorganic chemical biology: from small metal complexes in biological systems
to metalloproteins. Curr. Opin. Chem. Biol., 2008, 12, 194–196.
7.
Meggers, E. Exploring
biologically relevant chemical space with metal complexes. Curr. Opin. Chem.
Biol., 2007, 11, 287–292.
8.
Meggers, E. From
conventional to unusual enzyme inhibitor scaffolds: the quest for target
specificity. Angew. Chem. Int. Ed., 2011, 50, 2442–2448.
9.
Barry, N.P.E.; Sadler,
P.J. Exploration of the medical periodic table: towards new targets. Chem.
Commun., 2013, 49, 5106–5131.
10. Richens,
D.T. Ligand substitution reactions at inorganic centers. Chem. Rev., 2005, 105,
1961–2002. Barry, N.P.E.; Sadler, P.J. 100 years of metal coordination chemistry:
from Alfred Werner to anticancer metallodrugs. Pure Appl. Chem., 2014, 86,
1897–1910.
11. Hartinger,
C.G.; Dyson, P.J. Bioorganometallic chemistry - from teaching paradigms to
medicinal applications. Chem. Soc. Rev., 2009, 38, 391–401.
12. Meggers,
E. Targeting proteins with metal complexes. Chem. Commun., 2009, 2009,
1001–1010.
13. Gasser,
G.; Ott, I.; Metzler-Nolte, N. Organometallic anticancer compounds. J. Med.
Chem., 2011, 54, 3–25.
14. Gianferrara,
T.; Bratsos, I.; Alessio, E. A categorization of metal anticancer compounds
based on their mode of action. Dalton Trans., 2009, 2009, 7588–7598.
15. Graf,
N.; Lippard, S.J. Redox activation of metal-based prodrugs as a strategy for
drug delivery. Adv. Drug Deliv. Rev., 2012, 64, 993–1004.
16. Wang,
X.; Wang, X.; Jin, S.; Muhammad, N.; Guo, Z. Stimuli-responsive therapeutic
metallodrugs. Chem. Rev., 2019, 119, 1138–1192.
17. Stolpovskaya, E.V.; Trofimova,
N.N.; Babkin, V.A. Evaluation of antioxidant activity of dihydroquercetin
complexes with biogenic metal ions. Russ. J. Bioorg. Chem., 2017,
43(7), 742-746.
18. Guk, D.A.; Krasnovskaya, O.O.;
Beloglazkina, E. K. Coordination compounds of biogenic metals as cytotoxic
agents in cancer therapy. Russ. Chem. Rev., 2021, 90(12), 1566.
19. Perea-García, A.; Puig, S.;
Peñarrubia, L. The role of post-transcriptional modulators of metalloproteins
in response to metal deficiencies. J. Experim. Botany, 2022, 73(6),
1735-1750.
20. Kircheva, N.; Dudev, T.
Competition between abiogenic and biogenic metal cations in biological systems:
Mechanisms of gallium‘s anticancer and antibacterial effect. J. Inorg.
Biochem., 2021, 214, 111309.
21. Rono, J. K.; Sun, D.; Yang, Z. M.
Metallochaperones: A critical regulator of metal homeostasis and
beyond. Gene, 2022, 822, 146352.
22. Smethurst, D.G.; Shcherbik, N.
Interchangeable utilization of metals: New perspectives on the impacts of metal
ions employed in ancient and extant biomolecules. J. Biol.
Chem., 2021, 297(6), 101374.
23. Strazzullo, P.; Leclercq, C.
Sodium. Adv. Nutr., 2014, 5(2), 188-190.
24. Engstrom, A.; Tobelmann, R.C.;
Albertson, A.M. Sodium intake trends and food choices. Am.
J. Clin. Nutr., 1997, 65(2), 704S-707S.
25. Cappuccio, F.P.; Campbell, N.R.;
He, F.J.; Jacobson, M.F.; MacGregor, G.A.; Antman, E.; Willett, W. Sodium and
health: old myths and a controversy based on denial. Curr. Nutr.
Rep., 2022, 11(2), 172-184.
26. Weaver, C.M. Potassium and
health. Adv. Nutr., 2013, 4(3), 368S-377S.
27. Picard, K. Potassium additives and
bioavailability: are we missing something in hyperkalemia management? J.
Renal Nutr., 2019, 29(4), 350-353.
28. Stone, M.S.; Martyn, L.; Weaver,
C.M. Potassium intake, bioavailability, hypertension, and glucose
control. Nutr., 2016, 8(7), 444.
29. McLean, R.M.; Wang, N.X.
Potassium. In Advances in Food and Nutrition Research (Vol. 96, pp.
89-121). Academic Press, 2021.
30. Sattar, A.; Naveed, M.; Ali, M.;
Zahir, Z.A.; Nadeem, S.M.; Yaseen, M.; Meena, H.N. Perspectives of potassium
solubilizing microbes in sustainable food production system: A
review. Appl. Soil Ecol., 2019, 133, 146-159.
31. Lanham-New, S.A.; Lambert, H.;
Frassetto, L. Potassium. Adv. Nutr., 2012, 3(6), 820-821.
32. Hottinger, D.G., Beebe, D.S.; Kozhimannil, T.;
Prielipp, R.C.; Belani, KG. Sodium nitroprusside in 2014: A clinical concepts
review. J. Anaesth. Clin. Pharmacol. 2014, 30, 462-471.
33. Speckyj, A.; Kosmopoulos, M.; Shekar, K.; Carlson,
C.; Kalra, R.; Rees J.; Aufderheide, T.P.; Bartos, J.A.; Yannopoulos, D. Sodium
Nitroprusside–Enhanced Cardiopulmonary Resuscitation Improves Blood Flow by
Pulmonary Vasodilation Leading to Higher Oxygen Requirements. JACC: Basic
Translat. Sci. 2020, 5, 183-192.
34. Grzebisz, W. Magnesium–food and
human health. J. Elementol., 2011, 16(2).
35. Guerrera, M.P.; Volpe, S.L.; Mao,
J.J. Therapeutic uses of magnesium. Am. Family Physic., 2009, 80(2),
157-162.
36. Volpe, S.L. Magnesium in disease
prevention and overall health. Adv. Nutr., 2013, 4(3), 378S-383S.
37. Cazzola, R.; Della Porta, M.;
Manoni, M.; Iotti, S.; Pinotti, L.; Maier, J.A. Going to the roots of reduced
magnesium dietary intake: A tradeoff between climate changes and sources. Heliyon, 2020,
6(11), e05390.
38. Miller, D.D. Calcium in the diet:
food sources, recommended intakes, and nutritional bioavailability. Adv.
Food Nutr. Res., 1989, 33, 103-156.
39. Titchenal, C.A.; Dobbs, J. A
system to assess the quality of food sources of calcium. J. Food Compos.
Anal., 2007, 20(8), 717-724.
40. Miller, G.D.; Jarvis, J.K.;
McBean, L.D. The importance of meeting calcium needs with foods. J. Am.
College Nutr., 2001, 20(2), 168S-185S.
41. Shkembi, B.; Huppertz, T. Calcium
absorption from food products: food matrix effects. Nutr., 2022,
14(1), 180.
42. Beto, J.A. The role of calcium in
human aging. Clin. Nutr. Res., 2015, 4(1), 1-8.
43. Theobald, H.E. Dietary calcium and
health. Nutr. Bull., 2005, 30(3), 237-277.
44.
Schwalfenberg, G.K.; Genuis, S.J. The Importance of
Magnesium in Clinical Healthcare. Scientifica 2017, 2017, 1–14.
45. Glasdam, S.M.; Glasdam, S.;
Peters, G.H. The Importance of Magnesium in the Human Body: A Systematic
Literature Review. Adv. Clin. Chem. 2016, 73, 169-193.
46. Case, D.R.; Zubieta, J.P.; Doyle,
R. The Coordination Chemistry of Bio-Relevant Ligands and Their Magnesium
Complexes. Molecules 2020, 25(14), 3172-3195.
47. Aiello, D.; Carnamucio, F.;
Cordaro, M.; Foti, C.; Napoli, A.; Giuffrè, O. Ca2+ Complexation
with Relevant Bioligands in Aqueous Solution: A Speciation Study with
Implications for Biological Fluids. Front. Chem. 2021, 9, 640219.
48. Martins, A.C.; Krum, B.N.;
Queirós, L.; Tinkov, A.A.; Skalny, A.V.; Bowman, A.B.; Aschner, M. Manganese in
the diet: bioaccessibility, adequate intake, and neurotoxicological
effects. J. Agric. Food Chem., 2020, 68(46), 12893-12903.
49. Freeland-Graves, J.H.; Mousa,
T.Y.; Kim, S. International variability in diet and requirements of manganese:
Causes and consequences. J. Trace Elem. Med. Biol., 2016, 38, 24-32.
50. Aston, B. Manganese and
man. J. Orthomolec. Psychiatry, 1980, 9(237), 49.
51. Freeland-Graves, J.H.; Mousa,
T.Y.; Sanjeevi, N. Nutritional requirements for manganese. Manganese in
Heath and Disease; Costa, GL, Aschner, M.; Eds, 2014, 34-78.
52. Aschner, J.L.; Aschner, M.
Nutritional aspects of manganese homeostasis. Mol. Aspects
Med., 2005, 26(4-5), 353-362.
53. Troughton, J.S.;
Greenfield, M.T.; Greenwood, J.M.; Dumas, S.; Wiethoff, A.J.; Wang, J.;
Spiller, M.; McMurry, T.J.; Caravan, P. Synthesis and evaluation of a high relaxivity manganese
(II)-based MRI contrast agent. Inorg. Chem. 2004, 43, 6313-6323.
54. Miriyala,
S.; Spasojevic, I.; Tovmasyan, A.; Salvemini, D.; Vujaskovic, Z.; St Clair, D.;
Batinic-Haberle, I. Manganese superoxide dismutase, MnSOD and its mimics.
Biochim. Biophys. Acta, 2012, 1822, 794–814.
55. Singh, R.V.; Chaudhary, A. Biologically relevant tetra
azamacrocyclic complexes of manganese: synthetic, spectral, antimicrobial,
antifertility and anti-inflammatory approach. J. Inorg. Biochem. 2004, 98, 1712-1721.
56. Theil, E.C. Iron, ferritin, and
nutrition. Annu. Rev. Nutr., 2004, 24, 327-343.
57. Sood, M.; Sharada, D. Iron food
supplement. Ind. J. Pediatrics, 2002, 69, 943-946.
58. Theil, E.C. Iron homeostasis and
nutritional iron deficiency. J. Nutr., 2011, 141(4), 724S-728S.
59. Abbaspour, N.; Hurrell, R.;
Kelishadi, R. Review on iron and its importance for human health. J. Res.
Med. Sci., 2014, 19(2), 164.
60. Swanson, C.A. Iron intake and
regulation: implications for iron deficiency and iron overload. Alcohol, 2003,
30(2), 99-102.
61. Wani, W. A.; Baig, U.; Shreaz, S.;
Shiekh, R.A.; Iqbal, P.F.; Jameel, E.; Hun, L.T. Recent advances in iron
complexes as potential anticancer agents. New J. Chem. 2016, 40(2),
1063-1090.
62. Ghosh, U.; Seth, S.K.; Kar, T. Black tea extract: a supplementary antioxidant in
radiation-induced damage to DNA and normal lymphocytes. Polyhedron 2012,
34, 1-12.
63. Pierre, V.C.; Melchior, M.;
Doble, D.M.J.; Raymond, K.N. Toward Optimized High-Relaxivity MRI Agents:
Thermodynamic Selectivity of Hydroxypyridonate/Catecholate Ligands. Inorg. Chem. 2004, 43,
8520-8525.
64. Bukowski, M.R.; Zhu, S.;
Koehntop, K.D.; Brennessel, W.W.; Que, Jr.L. Characterization of an FeIII-OOH
species and its decomposition product in a bleomycin model system. J. Biol. Inorg. Chem. 2004,
9, 39-48.
65. Smolentsev, G.; Soldatov,
A.V.; Wasinger, E.C.; Solomon, E.I. Axial Ligation of Fe (II)− Bleomycin Probed by XANES
Spectroscopy. Inorg. Chem. 2004, 43,
1825-1827.
66. Gál, J.; Hursthouse, A.; Tatner,
P.; Stewart, F.; Welton, R. Cobalt and secondary poisoning in the terrestrial
food chain: data review and research gaps to support risk
assessment. Envir. Int., 2008, 34(6), 821-838.
67. Leyssens, L.; Vinck, B.; Van Der
Straeten, C.; Wuyts, F.; Maes, L. Cobalt toxicity in humans—A review of the potential
sources and systemic health effects. Toxicol., 2017, 387, 43-56.
68. Barceloux, D.G.; Barceloux, D.
Cobalt. Journal of Toxicology: Clin. Toxicol., 1999, 37(2), 201-216.
69. Sheikh, I. Cobalt poisoning: A
comprehensive review of the literature. Med. Toxicol. Clin. Forens.
Med., 2016, 2(2).
70. Heffern, M.C.; Yamamoto, N.; Holbrook, RJ.; Eckermann, A.L.;
Meade, T.J. Cobalt derivatives as promising therapeutic agents. Curr.
Opin. Chem. Biol., 2013, 17(2), 189-196.
71. Bonaccorso, C.; Marzo, T.; La Mendola, D. Biological
applications of thiocarbohydrazones and their metal complexes: A perspective
review. Pharmaceuticals, 2019, 13(1), 4.
72. Renfrew, A.K.; O'Neill, E.S.;
Hambley, T.W.; New, E.J. Harnessing the properties of cobalt coordination
complexes for biological application. Coord. Chem. Rev. 2018, 375,
221-233.
73. Munteanu, C.R.; Suntharalingam, K.
Advances in cobalt complexes as anticancer agents. Dalton Trans.
2015, 44(31), 13796-13808.
74. Ambika, S.; Manojkumar, Y.;
Arunachalam, S.; Gowdhami, B.; Meenakshi, K.K.; Solomon, R.V.; Sundararaman, M.
Biomolecular interaction, anti-cancer and anti-angiogenic properties of
cobalt(III) Schiff base complexes. Sci. Rep. 2019, 9(1), 1-14.
75. Begum, W.; Rai, S.; Banerjee, S.; Bhattacharjee, S.; Mondal,
M. H.; Bhattarai, A.; Saha, B. A comprehensive review on the sources,
essentiality and toxicological profile of nickel. RSC Adv., 2022,
12(15), 9139-9153.
76. Linder, M.C.; Hazegh-Azam, M.
Copper biochemistry and molecular biology. Am. J. Clin. Nutr., 1996,
63(5), 797S-811S.
77. Wapnir, R.A. Copper absorption and
bioavailability. Am. J. Clin. Nutr., 1998, 67(5), 1054S-1060S.
78. Olivares, M.; Uauy, R. Copper as
an essential nutrient. Am. J. Clin. Nutr., 1996, 63(5), 791S-796S.
79. Gunturu, S.; Dharmarajan, T.S.
Copper and zinc. Geriatr. Gastroenterol., 2020, 1-17.
80. Atukorala, T.M.S.; Waidyanatha,
U.S. Zinc and copper content of some common foods. J. Nat. Sci.
Coun., 1987, 15, 61-9.
81. Osredkar, J.; Sustar, N. Copper
and zinc, biological role and significance of copper/zinc imbalance. J.
Clinic. Toxicol. S., 2011, 3(2161), 0495.
82. Psomas, G.; Tarushi, A.; Efthimiadou, E.K.;
Sanakis, Y.; Raptopoulou, C.P.; Katsaros, N. Synthesis, structure and
biological activity of copper(II) complexes with oxolinic acid. J. Inorg. Biochem. 2006, 100, 1764–1773.
83. Gokhale,
N.H.; Padhye, S.S.; Padhye, S.B.; Anson, C.E.; Powell, A.K. Copper complexes of
carboxamidrazone derivatives as anticancer agents. 3. Synthesis,
characterization and crystal structure of [Cu(appc)Cl2], (appc=N1
-(2-acetylpyridine)pyridine-2- carboxamidrazone). Inorg. Chim. Acta 2001, 319,
90–94.
84. Efthimiadou, E.K.; Katsarou, M.E.; Karaliota, A.;
Psomas, G. Copper(II) complexes with sparfloxacin and nitrogen-donor
heterocyclic ligands: Structure–activity relationship. J. Inorg. Biochem. 2008, 102, 910–920.
85. Khan, G.; Merajver, S. Copper chelation in cancer
therapy using tetrathiomolybdate: an evolving paradigm. Expert Opin. Investig.
Drugs 2009, 4, 541-548.
86. Boswell, C.A.; Sun, X.;
Niu, W.; Weisman, G.R.; Wong, E.H.; Rheingold, A.L.; Anderson, C.J. Comparative in vivo stability of
copper-64-labeled cross-bridged and conventional tetra azamacrocyclic
complexes. J. Med. Chem. 2004, 47, 1465-1474.
87. Sun, X.; Kim, J.; Martell,
A.E.; Welch, M.J.; Anderson, C.J. In vivo evaluation of copper-64-labeled
monooxo-tetraazamacrocyclic ligands. Nucl. Med. Biol. 2004, 31,
1051-1059.
88. Hambidge, K.M.; Krebs, N.F. Zinc
deficiency: a special challenge. J. Nutr., 2007, 137(4), 1101-1105.
89. Cardozo, L.F.; Mafra, D. Don’t
forget the zinc. Nephrol. Dialysis Transpl., 2020, 35(7), 1094-1098.
90. Noulas, C.; Tziouvalekas, M.;
Karyotis, T. Zinc in soils, water and food crops. J. Trace Elem. Med.
Biol., 2018, 49, 252-260.
91. Maret, W.; Sandstead, H.H. Zinc
requirements and the risks and benefits of zinc supplementation. J. Trace
Elem. Med. Biol., 2006, 20(1), 3-18.
92. Ackland, M.L.; Michalczyk, A.A.
Zinc and infant nutrition. Arch. Biochem. Biophys., 2016, 611, 51-57.
93. Solomons, N.W. Dietary sources of
zinc and factors affecting its bioavailability. Food Nutr.
Bull., 2001, 22(2), 138-154.
94. Pellei, M.; Del Bello, F.;
Porchia, M.; Santini, C. Zinc coordination complexes as anticancer
agents. Coord. Chem. Rev. 2021, 445, 214088.
95. Novotny, J.A. Molybdenum nutriture
in humans. J. Evid. Based Complem. Alternat. Med., 2011, 16(3),
164-168.
96. Rajagopalan, K.V. Molybdenum: an
essential trace element in human nutrition. Annu. Rev. Nutr., 1988,
8(1), 401-427.
97. Novotny, J.A.; Peterson, C.A.
Molybdenum. Adv. Nutr., 2018, 9(3), 272-273.
98. Barceloux, D.G.; Barceloux, D.
Molybdenum. Journal of Toxicology: Clin. Toxicol., 1999, 37(2),
231-237.
99. Rébeillé, F.; Ravanel, S.;
Marquet, A.; Mendel, R.R.; Smith, A.G.; Warren, M.J. Roles of vitamins B5, B8,
B9, B12 and molybdenum cofactor at cellular and organismal levels. Nat.
Prod. Rep., 2007, 24(5), 949-962.
100. Odularu, A.T.; Ajibade, P.A.;
Mbese, J.Z. Impact of molybdenum compounds as anticancer agents. Bioinorg.
Chem. Appl. 2019, 2019, 6416198.
101. Li, Y.; Fang, M.; Xu,
Z.; Li, X. Tetrathiomolybdate as an old drug in a new use: As a
chemotherapeutic sensitizer for non-small cell lung cancer. J. Inorg.
Biochem., 2022, 2022, 111865.

This work is licensed under the
Creative Commons Attribution
4.0
License (CC BY-NC 4.0).
Abstract
The biogenic metals (Na, K,
Mg, Ca, Mn, Fe, Co, Cu, Zn and Mo) and their compounds are widely studied. Basic
multidisciplinary research in medicinal inorganic chemistry and bioinorganic
chemistry contributes to the development of pharmaceuticals with potential
future medical application, therapeutics, and the health benefits therein.
Consideration and research to control the action of biogenic chemical elements and their compounds in
the living organisms are crucial for their possible useful application and the
key to circumventing their toxicity. The biogenic metals have various
physical and chemical properties consistent with their location in the periodic
table, that is why their biological roles are different. Their typical chemical
properties involve the formation of coordination complexes and
oxidation-reduction reactions. The current
review focuses upon the functions of biogenic metals in living systems, their
food abundance, including the utility of these elements and their compounds in medicinal therapy and
diagnosis.
Abstract Keywords
Biogenic metals, food abundance, biological role, therapeutic
and diagnostic agents

This work is licensed under the
Creative Commons Attribution
4.0
License (CC BY-NC 4.0).

Editor-in-Chief

This work is licensed under the
Creative Commons Attribution 4.0
License.(CC BY-NC 4.0).