Research Article
Mousumi Hazra
Mousumi Hazra
Corresponding
author
Department of Botany and Microbiology, Gurukula Kangri (Deemed to be
University), Haridwar- 249404, Uttarakhand, India
E-mail: mousumi45@gmail.com, mousumihazra.biotech@gmail.com
Phone:
+91-812691567
Ramesh Chandra Dubey
Ramesh Chandra Dubey
Department of Botany and Microbiology, Gurukula Kangri (Deemed to be
University), Haridwar- 249404, Uttarakhand, India
Abstract
Enzyme histidine
kinase (HK) is essential to a bacterial two-component system. Due to its
exclusive presence in microorganisms, it is considered a critical antimicrobial
target. The primary role of HK is to take part in transducing signals in an
NTP-dependent manner. As a phosphoryl donor HK family popularly uses Adenosine
Triphosphate (ATP). Enzyme BA2291 from Bacillus anthracis is a rare exception
that uses Guanosine Triphosphate (GTP). BA2291 is a part of the sporulation
mechanism of B. anthracis. Sporulation regulates the transformation between the
vegetative and spore-forming phases. Therefore, BA2291 plays an essential role
in the survival of B. anthracis, making the protein a unique and exciting
target for a novel antibacterial hunt. Utilizing the interdisciplinary in
silico methods of Predictive Modeling, Docking, and Molecular Dynamics (MD),
the present communication unravels the biochemical evidence behind its
preference for GTP over ATP. Anthrax is a well-known life-threatening disease.
However, this disease has yet to be wholly eradicated anthrax due to the
deficiency of our understanding. The present study would be instrumental in
unraveling the molecular basis for HK functioning and developing a platform for
designing anti-anthrax therapeutics.
Keywords
BA2291, Bacillus
anthracis, anthrax, molecular dynamics simulation, GTP, histidine kinase.
Abstract
Enzyme histidine
kinase (HK) is essential to a bacterial two-component system. Due to its
exclusive presence in microorganisms, it is considered a critical antimicrobial
target. The primary role of HK is to take part in transducing signals in an
NTP-dependent manner. As a phosphoryl donor HK family popularly uses Adenosine
Triphosphate (ATP). Enzyme BA2291 from Bacillus anthracis is a rare exception
that uses Guanosine Triphosphate (GTP). BA2291 is a part of the sporulation
mechanism of B. anthracis. Sporulation regulates the transformation between the
vegetative and spore-forming phases. Therefore, BA2291 plays an essential role
in the survival of B. anthracis, making the protein a unique and exciting
target for a novel antibacterial hunt. Utilizing the interdisciplinary in
silico methods of Predictive Modeling, Docking, and Molecular Dynamics (MD),
the present communication unravels the biochemical evidence behind its
preference for GTP over ATP. Anthrax is a well-known life-threatening disease.
However, this disease has yet to be wholly eradicated anthrax due to the
deficiency of our understanding. The present study would be instrumental in
unraveling the molecular basis for HK functioning and developing a platform for
designing anti-anthrax therapeutics.
Keywords
BA2291, Bacillus
anthracis, anthrax, molecular dynamics simulation, GTP, histidine kinase.
References
1.
Stock, A. M.; Robinson, V. L.; Goudreau,
P. N. Two-Component Signal Transduction. Annu. Rev. Biochem. 2000, 69, 183-215.
2.
West, A. H.; Stock, A. M. Histidine
Kinases and Response Regulator Proteins in Two-Component Signaling Systems.
Trends Biochem. Sci. 2001, 26, 369-376.
3.
White, A. K.; Hoch, J. A.; Grynberg, M.;
Godzik, A.; Perego, M. Sensor Domains Encoded in Bacillus Anthracis Virulence
Plasmids Prevent Sporulation by Hijacking a Sporulation Sensor Histidine
Kinase. J. Bacteriol. 2006, 188, 6354-6360.
4.
Read, T. D.; Peterson, S. N.; Tourasse,
N.; Baillie, L. W.; Paulsen, I. T.; Nelson, K. E.; Tettelin, H.; Fouts, D. E.;
Eisen, J. A.; Gill, S. R.; et al. The Genome Sequence of Bacillus Anthracis
Ames and Comparison to Closely Related Bacteria. Nature. 2003, 423, 81-86.
5.
Stranzl, G. R.; Santelli, E.; Bankston,
L. A.; La Clair, C.; Bobkov, A.; Schwarzenbacher, R.; Godzik, A.; Perego, M.;
Grynberg, M.; Liddington, R. C. Structural Insights into Inhibition of Bacillus
Anthracis Sporulation by a Novel Class of Non-Heme Globin Sensor Domains. J.
Biol. Chem. 2011, 286, 8448-8458.
6.
Scaramozzino, F.; White, A.; Perego, M.;
Hoch, J. A. A Unique GTP-Dependent Sporulation Sensor Histidine Kinase in
Bacillus Anthracis. J. Bacteriol. 2009, 191, 687-692.
7.
Tzeng, Y. L. A Unique Sensor Histidine
Kinase. J. Bacteriol. 2009, 191, 681-682.
8.
Altschul, S. F.; Gish, W.; Miller, W.;
Myers, E. W.; Lipman, D. J. Basic Local Alignment Search Tool. J. Mol. Biol.
1990, 215, 403-410.
9.
Corpet, F. Multiple Sequence Alignment
with Hierarchical Clustering. Nucleic Acids Res. 1988, 16, 10881-10890.
10.
Bick, M. J.; Lamour, V.; Rajashankar, K.
R.; Gordiyenko, Y.; Robinson, C. V.; Darst, S. A. How to switch off a histidine
kinase: crystal structure of Geobacillus stearothermophilus KinB with the
inhibitor Sda. J. Mol. Biol. 2009, 386, 163-177.
11.
Arnold, K.; Bordoli, L.; Kopp, J.;
Schwede, T. The Swiss-Model Workspace: A Web-Based Environment for Protein
Structure Homology Modelling. Bioinformatics. 2005, 22, 195-201.
12.
Emsley, P.; Cowtan, K. Coot:
Model-Building Tools for Molecular Graphics. Acta Crystallogr., Sect. D: Biol.
Crystallogr. 2004, 60, 2126-2132.
13.
Guex, N.; Peitsch, M. C. Swiss-Model and
the Swiss-PDB Viewer: An Environment for Comparative Protein Modeling.
Electrophoresis. 1997, 18, 2714-2723.
14.
Laskowski, R. A.; Hutchinson, E. G.;
Michie, A. D.; Wallace, A. C.; Jones, M. L.; Thornton, J. M. PDBsum: A
Web-Based Database of Summaries and Analyses of All PDB Structures. Trends
Biochem. Sci. 1997, 22, 488-490.
15.
Laskowski, R. A. PDBsum New Things.
Nucleic Acids Res. 2009, 37, D355-D359.
16.
Van Der Spoel, D.; Lindahl, E.; Hess,
B.; Groenhof, G.; Mark, A. E.; Berendsen, H. J. Gromacs: Fast, Flexible, and
Free. J. Comput. Chem. 2005, 26, 1701-1718.
17.
Laskowski, R. A.; MacArthur, M. W.;
Moss, D. S.; Thornton, J. M. Procheck: A Program to Check the Stereochemical
Quality of Protein Structures. J. Appl. Crystallogr. 1993, 26, 283-291.
18.
Trott, O.; Olson, A. J. Autodock Vina:
Improving the Speed and Accuracy of Docking with a New Scoring Function,
Efficient Optimization, and Multithreading. J. Comput. Chem. 2010, 31, 455-461.
19.
Hazra, S.; Konrad, M.; Lavie, A. The
Sugar Ring of the Nucleoside Is Required for Productive Substrate Positioning
in the Active Site of Human Deoxycytidine Kinase (DCK): Implications for the
Development of DCK-Activated Acyclic Guanine Analogues. J. Med. Chem. 2010, 53,
5792-5800.
20.
Sabini, E.; Hazra, S.; Konrad, M.;
Lavie, A. Elucidation of Different Binding Modes of Purine Nucleosides to Human
Deoxycytidine Kinase. J. Med. Chem. 2008, 51, 4219-4225.
21.
Morris, A. L.; MacArthur, M. W.;
Hutchinson, E. G.; Thornton, J. M. Stereochemical Quality of Protein Structure
Coordinates. Proteins: Struct., Funct., Bioinf. 1992, 12, 345-364.
22.
Hess, B.; Kutzner, C.; van der Spoel,
D.; Lindahl, E. Gromacs 4: Algorithms for Highly Efficient, Load-Balanced, and
Scalable Molecular Simulation. J. Chem. Theory Comput. 2008, 4, 435-447.
23.
Schuler, L. D.; Daura, X.; van
Gunsteren, W. F. An Improved GROMOS96 Force Field for Aliphatic Hydrocarbons in
the Condensed Phase. J. Comput. Chem. 2001, 22, 1205-1218.
24.
Schüttelkopf, A. W.; van Aalten, D. M.
Prodrg: A Tool for High-Throughput Crystallography of Protein–Ligand Complexes.
Acta Crystallogr., Sect. D: Biol. Crystallogr. 2004, 60, 1355-1363.
25.
Breneman, C. M.; Wiberg, K. B.
Determining Atom-Centered Monopoles from Molecular Electrostatic Potentials.
the Need for High Sampling Density in Formamide Conformational Analysis. J.
Comput. Chem. 1990, 11, 361-373.
26.
Hehre, W. J.; Lathan, W. A.; Ditchfield, R.; Newton,
M. D.; Pople, J. A. GAUSSIAN 70, Program No. 236, Quantum Chemistry Program
Exchange. Indiana University, Bloomington, IN. 1973.
27.
Pople, J. A.; Head‐Gordon, M.; Fox, D.
J.; Raghavachari, K.; Curtiss, L. A. Gaussian‐1 Theory: A General Procedure for
Prediction of Molecular Energies. J. Chem. Phys. 1989, 90, 5622-5629.
28.
Miyamoto, S.; Kollman, P. A. Settle: An
Analytical Version of the Shake and Rattle Algorithm for Rigid Water Models. J.
Comput. Chem. 1992, 13, 952-962.
29.
Hess, B.; Bekker, H.; Berendsen, H. J.;
Fraaije, J. G. Lincs: A Linear Constraint Solver for Molecular Simulations. J.
Comput. Chem. 1997, 18, 1463-1472.
30.
Bandekar, D.; Mohapatra, S.; Hazra, M.;
Hazra, S.; Biswas, S. N-Terminal Truncation of VC0395_0300 Protein from Vibrio
Cholerae Does Not Lead to Loss of Diguanylate Cyclase Activity. Biophys. Chem.
2021, 268, 106493.
31.
Darden, T.; Perera, L.; Li, L.;
Pedersen, L. New Tricks for Modelers from the Crystallography Toolkit: The
Particle Mesh Ewald Algorithm and Its Use in Nucleic Acid Simulations.
Structure. 1999, 7, R55-R60.
32.
Paul, M.; Hazra, M.; Barman, A.; Hazra,
S. Comparative Molecular Dynamics Simulation Studies for Determining Factors
Contributing to the Thermostability of Chemotaxis Protein “Chey.” J. Biomol. Struct. Dyn. 2013, 32, 928-949.
33.
Hazra, M.; Dubey, R. C. In Silico Study
of Cox Protein from P2 Type Enteric Bacteriophages Based on Sequence, Structure
and Dynamics to Understand Its Functional Integrity. J. Biomol. Struct. Dyn.
2021, 40, 14035-14050.
34.
Hazra, M.; Dubey, R. C.
Interdisciplinary in Silico Studies to Understand In-Depth Molecular Level
Mechanism of Drug Resistance Involving NS3-4A Protease of HCV. J. Biomol.
Struct. Dyn. 2022, 1-20 (published online).
35.
Humphrey, W.; Dalke, A.; Schulten, K.
VMD: Visual Molecular Dynamics. J. Mol. Graph. 1996, 14, 33-38.
36.
Hsin, J.; Arkhipov, A.; Yin, Y.; Stone,
J. E.; Schulten, K. Using VMD: An Introductory Tutorial. Curr. Protoc.
Bioinform. 2008, 24, 5-7.
37.
DeLano, W. L.
The PyMOL molecular graphics system. DeLano Scientific, San Carlos, CA,
USA. http://www. pymol. org. 2002.
38.
Wang, Z.; Pan, H.; Sun, H.; Kang, Y.;
Liu, H.; Cao, D.; Hou, T. fastDRH: A Webserver to Predict and Analyze
Protein–Ligand Complexes Based on Molecular Docking and MM/PB(Gb)SA
Computation. Brief. Bioinform. 2022, 23, bbac201.
39.
Pettersen, E. F.; Goddard, T. D.; Huang,
C. C.; Couch, G. S.; Greenblatt, D. M.; Meng, E. C.; Ferrin, T. E. UCSF
Chimera?a Visualization System for Exploratory Research and Analysis. J.
Comput. Chem. 2004, 25, 1605-1612.
40.
Tanaka, T.; Saha, S. K.; Tomomori, C.;
Ishima, R.; Liu, D.; Tong, K. I.; Park, H.; Dutta, R.; Qin, L.; Swindells, M.
B.; et al. NMR Structure of the Histidine Kinase Domain of the E. Coli
Osmosensor EnvZ. Nature, 1999, 396, 88-92.

This work is licensed under the
Creative Commons Attribution
4.0
License (CC BY-NC 4.0).
Abstract
Enzyme histidine
kinase (HK) is essential to a bacterial two-component system. Due to its
exclusive presence in microorganisms, it is considered a critical antimicrobial
target. The primary role of HK is to take part in transducing signals in an
NTP-dependent manner. As a phosphoryl donor HK family popularly uses Adenosine
Triphosphate (ATP). Enzyme BA2291 from Bacillus anthracis is a rare exception
that uses Guanosine Triphosphate (GTP). BA2291 is a part of the sporulation
mechanism of B. anthracis. Sporulation regulates the transformation between the
vegetative and spore-forming phases. Therefore, BA2291 plays an essential role
in the survival of B. anthracis, making the protein a unique and exciting
target for a novel antibacterial hunt. Utilizing the interdisciplinary in
silico methods of Predictive Modeling, Docking, and Molecular Dynamics (MD),
the present communication unravels the biochemical evidence behind its
preference for GTP over ATP. Anthrax is a well-known life-threatening disease.
However, this disease has yet to be wholly eradicated anthrax due to the
deficiency of our understanding. The present study would be instrumental in
unraveling the molecular basis for HK functioning and developing a platform for
designing anti-anthrax therapeutics.
Abstract Keywords
BA2291, Bacillus
anthracis, anthrax, molecular dynamics simulation, GTP, histidine kinase.

This work is licensed under the
Creative Commons Attribution
4.0
License (CC BY-NC 4.0).


This work is licensed under the
Creative Commons Attribution 4.0
License.(CC BY-NC 4.0).